B vww.freenove.com >4 support@freenove.com _

Getting Started

Thank you for choosing Freenove products!
First, please read the Read Me First.pdf document in the unzipped folder you created.
If you have not yet downloaded the zip file, associated with this kit, please do so now and unzip it.

Get Support and Offer Input

Freenove provides free and responsive product and technical support, including but not limited to:
Product quality issues

Product use and build issues

Questions regarding the technology employed in our products for learning and education
Your input and opinions are always welcome

We also encourage your ideas and suggestions for new products and product improvements
For any of the above, you may send us an email to:

support@freenove.com

Safety and Precautions

Please follow the following safety precautions when using or storing this product:

® Keep this product out of the reach of children under 6 years old.

® This product should be used only when there is adult supervision present as young children lack
necessary judgment regarding safety and the consequences of product misuse.

® This product contains small parts and parts, which are sharp. This product contains electrically conductive
parts. Use caution with electrically conductive parts near or around power supplies, batteries and
powered (live) circuits.

® When the product is turned ON, activated or tested, some parts will move or rotate. To avoid injuries to
hands and fingers, keep them away from any moving parts!

® |tis possible that an improperly connected or shorted circuit may cause overheating. Should this happen,
immediately disconnect the power supply or remove the batteries and do not touch anything until it
cools down! When everything is safe and cool, review the product tutorial to identify the cause.

® Only operate the product in accordance with the instructions and guidelines of this tutorial, otherwise

parts may be damaged or you could be injured.

Store the product in a cool dry place and avoid exposing the product to direct sunlight.

After use, always turn the power OFF and remove or unplug the batteries before storing.

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com
mailto:support@freenove.com

n DX support@freenove.com www.freenove.com [l

Car and Robot for Raspberry Pi

We also have cars and robot kit for Raspberry Pi. If you are interesting in them, please visit our website for
details.

http://www.freenove.com/store.html

FNKO043 Freenove 4WD Smart Car Kit for Raspberry Pi

FEATURES CONTROL CLIENT FOR CAR

& (« Android App and gcomputer client (for Windews, Mac or Linux)
— 7 A A
=) <
/i \ R v
{ H“} == Y
\ / A

4 Fi

Face Obstacle
-| Tracking Avoidance

= ,\-Mumple
= Clients

Light Clorful
Tracing Light Sets

https://www.youtube.com/watch?v=42v0GZUQjZc

FNKOO50 Freenove Robot Dog Kit for Raspberry Pi

IZA TL;RE S ¢ @%

CRAWLING MOVE BODY @

g

il S a

TWIST BODY Charge on board Buzzer

ccccccccc

https://www.youtube.com/watch?v=7BmI|Z8_R9d4&t=35s

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/store.html
https://www.youtube.com/watch?v=4Zv0GZUQjZc
https://www.youtube.com/watch?v=7BmIZ8_R9d4&t=35s

B vww.freenove.com >4 support@freenove.com _

About Freenove

Freenove provides open source electronic products and services worldwide.

Freenove is committed to assist customers in their education of robotics, programming and electronic circuits
so that they may transform their creative ideas into prototypes and new and innovative products. To this end,
our services include but are not limited to:

Educational and Entertaining Project Kits for Robots, Smart Cars and Drones
Educational Kits to Learn Robotic Software Systems for Arduino, Raspberry Pi and micro: bit
Electronic Component Assortments, Electronic Modules and Specialized Tools

Product Development and Customization Services
You can find more about Freenove and get our latest news and updates through our website:

http://www.freenove.com

Copyright

All the files, materials and instructional guides provided are released under Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. A copy of this license can be found in the folder containing

the Tutorial and software files associated with this product.

This means you can use these resource in your own derived works, in part or completely, but NOT for the
intent or purpose of commercial use.

Freenove brand and logo are copyright of Freenove Creative Technology Co., Ltd. and cannot be used without
written permission.

o
/<
FREENOVE

FREE YOUR INNOVATION

Raspberry Pi® is a trademark of Raspberry Pi Foundation (https://www.raspberrypi.org/).

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.raspberrypi.org/

support@freenove.com www.freenove.com [l
Contents
LCT=Y i d] g Ve [=] o (=T IO RS SR |
SAfELY AN PIrECAULIONSttt ettt ettt sn et n e es e, I
Car and RODOL TOF RASPIIEITY Pl.......oceeeceeeeceeeeeee ettt Il
ADOUL FIEENOVE ... s8££t [
(@) 0) V45T |) SO I
L0 o) =T 3 N v
o =0 = T 1
2 LY 0] o 110 Y0 o OSSR 2
Installing an OPerating SYSTEIM ... se s e sas e se s e sas e ses e e s e e san e san e e nseenans 9
COMPONENT LIST ...ttt ettt s et s e st et en st st et e s st n et e s n st s naesen s s ensnaesanen 9
OPLIONAI COMPONENTES ...ttt ettt ettt ettt en st eae e s s et sn et en e anenaas 11
RASPDEITY PiiOS ...ttt ettt ettt s et s et en et n st an et nan s aes 13
Getting Started WIth RASPIEITY Pl ...ttt 17
(04 S =T o (=T g O =Y o T= Y 14 [o 29
LINUX COMIMEANG 1ottt ettt b s bbbttt 29
INSTAI MWITINGPI oottt ettt ettt e s et s et en e n et an e s nanses e s 32
ObBTaIN ThE PrOJECT COUE ...ttt ettt en e en e, 34
PYTNONZ G PYTNONS ...t ettt ettt s et s et en et n st an st nansesenen s 35
L0431 o7 =1 i I 0 5 37
PIOJECE 1.1 BIINK oottt ettt et n e s et e s et s et en et en et an et enansesenenans 37
Chapter 2 BULTONS & LEDSccieoiiiererenesese s sessesessess s sessesessesssssssssssssssssssssssssesssssssssssssssassssssssssssnssasssees 59
Project 2.1 Push BUEtON SWITCN & LED ..ottt 59
Project 2.2 MINI Table LAmID ..ottt 65
Chapter 3 LED Bar Graph ... sessesesess s sessesessesssssssssssssssssssssssssasssssssssssassssesssssssesssssssasssens 71
Project 3.1 FIOWING WaTEr LIGNT ..ottt 71
Chapter 4 ANAlog & PWIM ...t ses e s sasssses e s sassssassssssssssssssssassssssssnssssnssasasnes 77
Project 4.1 Breathing LED ...ttt 77
Chapter 5 RGB LED ... e sessesesssssssssssassesessssssssssassssssssnssssss sassssssssssssssssesssssnssnsssenssasssnes 84
Project 5.1 MUITICOIOTEA LEDccoiiiiiiiiiiciees ettt 85
(04 ST o =T g G =TT . =) T 91
ProJECE 6.1 DOOIDEII ...ttt 91
PrOJECE 6.2 AlBITON ...ttt ettt bbbt s b s bt bbb bbb eb s 97
(IMPOrtant) Chapter 7 ADC ... sessess e ssssesssssssssssssasssssssssssssssssssssssssssssessssssssnssssssens 102
Project 7.1 Read the Voltage Of POLENTIOMETEN ..ottt 102
Chapter 8 POtentiometer & LED ... sessesessess s sssssssssssssssssssssssssssssssssssssssasssssssens 117
ProOJECE 8.1 SOt LIGNT. ..ottt bbb bbbt ns 117
Chapter 9 Potentiometer & RGBLED ..o sesesessess s ssssesssens 124
Project 9.1 ColOrUl LIGNT ..ot bbb 124
Chapter 10 PhotoreSiStor & LEDcieeiesrinesesesesessssssssssessssessen 131
ProjeCt 10.1 NIGNTLAMIPD c.ucviiiiiieiieieee ettt bbb s bbb bbbt 131
(04 a1 o (= g I I o =T 3 03 o Y TR 139

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com support@freenove.com

ProjeCt 11.1 TREIMOMELET ...cocuiiiiicecictee ettt bbb bbb nans 139
Chapter 12 JOYSHICK ..coucceeriierereesessrse s seesesse s ssesesss s s sss e s e s ssessssssssssesssssssssssssssnssssssasssnnssssssssssssnssesessssssnnns 147
PrOJECT 1 2.1 JOYSTICK ..ottt 147
Chapter 13 MOLOF & DIIVENcovcrerereerirsesesesessesse e sessesse s ssesesssssssssasssnns 155
Project 13.1 Control a DC Motor with @ POTENTIOMELET ... 155
Chapter 14 Relay & IMOTOFXcoicieicreesersesse s sesses s sseses s sssssesassnnns 170
Project 14.1.1 RElAY & MOTOT ...ttt 170
(08 0T T o1 =T g KoY =T o TSR 178
PrOJECE 15.1 SEIVO SWEEP ...ttt 178
(04 0 F=T o1 =1 g SRS (=Y o o T=T gl 1V, T} o 1 SRR 187
Project 16.1 SEEPPEN IMIOTON ...ttt 187
Chapter 17 74HC595 & Bar Graph LED ... ssesessessessesssssssssssssssssssssssssssssnnns 198
Project 17.1 FIOWING Water LIgNT. ..ottt 198
Chapter 18 74HC595 & 7-Segment DiSPlaycccccvvrreriiiinierre s ssessessse s ssessssssessesssssssssessesssssnes 207
Project 18.1 7-SegMENTt DISPIAYiiuieiieiiieieiee ettt 207
Project 18.2 4-Digit 7-SegmMeENT DISPIaYcccviiiiiiiieiee ettt 214
Chapter 19 74HC595 & LED MaAtriX....c.ccucceriiirreriesiinserseessessessesssssessesssssssssesssssssssessessessssssessessssssssessnssnsses 227
ProjeCt 19.1 LED IMATIIX ...ttt 227
(04 0 =T o7 =T g2 0 04 1 0 239
Project 20.1 12C LCDIB02. ..ot 239
Chapter 21 Hygrothermograph DHTLL ... sses e sessse s s ssessssssessessnsssssessnssnsnes 250
Project 21.1 HygrotherMOgraph ...ttt 250
(030 =T o (=T g2\, F= 1 D 1=/ o - Lo S 257
Project 22.1 MatriX KEYPAMcoieiceeeeesceeeeeee ettt nans 257
Chapter 23 Infrared MOLION SENSOT ... s as e s en s e e s nnnnnns 267
Project 23.1 PIR Infrared Motion Detector with LED INAICALONcooivcveeeiceececeeeeee s 267
Chapter 24 UItrasoniC RANGINGcccceeerriiiiesesseisssesssssssessessesessessessesssssssssssssssssssssssssssssssssssesssssssssssssssssssnns 274
Project 24.1 UIraSoniC RANGINGc..cuoieiciieeiceeceet ettt sttt nans 274
Chapter 25 Attitude SeNSOr MPUBOSO0ccccveriiierrrrsinese s s e sssses s ssesessessesessssssssssessssssssssesssssssnnns 283
Project 25.1 Read @ MPUBO50 SENSOr MOAUIEccviivieciceeeeeeee et 283
Chapter 26 WED 10T ...t se s sss e s e s s sas s s saesns e s s s san e s e s e eaesnnsnssesannnnnnnns 291
Project 26.1 REMOLE LED ...ttt st nans 291
Chapter 27 Soldering a CirCuit BOArd.........c.ccoocriiernsnnninecssssse s ssessssessessessssesssssessssssssssesssssssnnns 296
Project 27.1 SOIAEIING @ BUZZEN ...ttt nans 296
Project 27.2 Soldering a FIOWINg Water LIGNt.........ooieceeeee et 300
RT3 T 309

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com >4 support@freenove.com

Preface

Raspberry Pi is a low cost, credit card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. It is an incredibly capable little device that enables people of all ages to explore
computing, and to learn how to program in a variety of computer languages like Scratch and Python. It is
capable of doing everything you would expect from a desktop computer, such as browsing the internet,
playing high-definition video content, creating spreadsheets, performing word-processing, and playing video
games. For more information, you can refer to Raspberry Pi official website. For clarification, this tutorial will

also reference Raspberry Pi as RPi, RPI and RasPi.

In this tutorial, most chapters consist of Components List, Component Knowledge, Circuit, and Code (C
code and Python code). We provide both C and Python code for each project in this tutorial. After completing
this tutorial, you can learn Java by reading Processing.pdf.

This kit contains all the accessory electronic components and modules needed to complete the projects
described in the index. You can also use these components and modules to create projects of your own
design.

Additionally, if you encounter any issues or have questions about this tutorial or the contents of kit, you can
always contact us for free technical support at:

support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/
mailto:support@freenove.com

< support@freenove.com

www.freenove.com [l

Raspberry Pi

So far, at this writing, Raspberry Pi has advanced to its fourth generation product offering. Version changes
are accompanied by increases in upgrades in hardware and capabilities.

The A type and B type versions of the first generation products have been discontinued due to various reasons.
What is most important is that other popular and currently available versions are consistent in the order and
number of pins and their assigned designation of function, making compatibility of peripheral devices greatly

enhanced between versions.

Below are the raspberry pi pictures and model pictures supported by this product. They have 40 pins.

E snmo

2| y061 K =uTYY
“INGHOZ609LUL |

o| gioaxay = €

?_.|

Actual image of Raspberry Pi 4 Model B:

CAD image of Raspberry Pi 4 Model B:

13NY3HL3

©
o
«
o
[
@
a
a
@
©
14
©

@
o
°
2
<
o
@
a
a
@
©
o

2

oD

A\ﬂdS‘G I1Sa
|

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

X support@freenove.com

Actual image of Raspberry Pi 3 Model B+:

U gy

o0 [gletd
- . LGN

O B) :1 '

J1PWR IN

RCTRI T
3 -

CAD image of Raspberry Pi 3 Model B+:

NN

13NY3HLT

&

pberry Pi 3 Model B+
aspberry Pi 2017

Actual image of Raspberry Pi 3 Model B:\

WA A\ A

ery Bi 3 Mol B V1.2

)
s
&

-

1D: 2ABCS
1C: 20953-RP132

CAD image of Raspberry Pi 3 Model B:

NN

L3INY3IHLI

o =
)

= .u
3 -

CSI (CAMERA)

Model Bv1.2
y Pi 2015

(AV1dSIQ) ISC
LT €

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

www.freenove.com [l

Avesia
TTITTITTIITIIIIIL

Actual image of Raspberry Pi 2 Model B:

CAD image of Raspberry Pi 2 Model B:
1

Raspberry Pi 2 Model B
© Raspberry Pi 2014

it Jiwww saspbecrypi.or

(AV1ds10) I1ISa
RENRRRNERENNEND

~
=
+
=
<
=
=

3 AV14S10

BNd. 1OV,
" fell Rl ©

ST AR

CAD image of Raspberry Pi 1 Model B+:
I

it Jiwww raspbecrypi.org

o~
-
>
+
[a1]
°
°
<}
=
o
2
=
(7}
a
a
(7}
©
o

<
-
o
3
a
2
=
@
Q
a
7]
[\
o
(@]

(AV1dS10) 1Sa
RENNRRNERENNEND

L

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Actual image of Raspberry Pi 3 Model A+: CAD image of Raspberry Pi 3 Model A+:

-~z -

CSI (CAMERA)

|

=
<
o
o
s}
=
)
o
2
=
[}
2
aQ
w
©
o

© Raspberry Pi 2018

rypi.org

hitp:/fwaw raspber

(Av1dsia) Isa

‘ BERENRENEREE ‘

10V i Q

i), L),

Actual image of Raspberry Pi 1 Model A+: CAD image of Raspberry Pi 1 Model A+:

3

=
<
-
-

2014

&
<V
EF’
o
B
=g
gz
>
£
2%
%m
4
x o

GPIO

AV1ds1a

TITEEEIIIIIIINY

(Av1dsia) ISa

. BERRENNNNEENEND
L L

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m 4 support@freenove.com www.freenove.com [l

Actual image of Raspberry Pi Zero W: CAD image of Raspberry Pi Zero W:

B

Raspberry Pi Zero W

(LY PR
GHDTH® *

e
@
N
o
@
a
o
@
T
o

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Hardware interface diagram of RPi 4B:
e

““““““““““

GPIO

Connector Raspberry Pi 4 Model B
© Raspberry Pi 2018

Ethernet
Connector

ETHERNET

Display

Connector

USB
Connector x4

Power
Power
Connector g

CSI (CAMERA)
|

Micro HDMI
Connector x2

Camera

Connector Connector

Hardware interface diagram of RPi 3B+/3B/2B/1B+:
e

GPIO
Raspberry Pi 3 Model Bv1.2
Connector © Raspberry Pi 2015

USB
Connector

Display

Connector

DSI (DISPLAY)

Ethernet

Power Connector

ETHERNET

(Y¥3UVD) ISD

Connector

HDMI
Connector

Camera

Connector

Connector

Hardware interface diagram of RPi 3A+/A+:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m 4 support@freenove.com www.freenove.com [l

GPIO R S S
GPIO
Connector Raspberry Pi Model A+
© Raspberry Pi 2014

USB
- Connector

Display

Connector

DSI (DISPLAY)

HDMI

P ower B

(ve3WYD) ISO

Connector

HDMI
Connector

Audio
Connector

Camera

Connector

Hardware interface diagram of RPi Zero/Zero W:

GPIO

Connector
Raspberry Pi Zero W

Camera

Connector

USB Power

Connector

HDMI
Connector

Connector

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

>4 support@freenove.com _

B www .freenove.com

Installing an Operating System

The first step is to install an operating system on your RPi so that it can be programmed and function. If you
have installed a system in your RPi, you can start from Chapter O Preparation.

Component List

Required Components

5V/3A Power Adapter. Note: Different versions of
Raspberry Pi have different power requirements
(please check the power requirements for yours
on the chart in the following page.)

Any Raspberry Pi with 40 GPIO

& Rosgbercy Pi 4 Model B
©Raspberry Pi 2016

na M 1904

<Adus

?
3 Chi.

=1 | Trxcom® |-
| TRIGO926HENL .

Micro SD Card (TF Card) x1, Card Reader x1

SAMSUNG 0'’zgsn

D asoronw

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Power requirements of various versions of Raspberry Pi are shown in following table:

Product Recommended | Maximum total USB Typical bare-board
PSU current peripheral current draw active current
capacity consumption

Raspberry Pi Model A 700mA 500mA 200mA

Raspberry Pi Model B 1.2A 500mA 500mA

Raspberry Pi Model A+ 700mA 500mA 180mA

Raspberry Pi Model B+ 1.8A 600mA/1.2A (switchable) 330mA

Raspberry Pi 2 Model B 1.8A 600mA/1.2A (switchable) 350mA

Raspberry Pi 3 Model B 2.5A 1.2A 400mA

Raspberry Pi 3 Model A+ 25A Limited by PSU, board, and 350mA

connector ratings only.

Raspberry Pi 3 Model B+ @ 2.5A 1.2A 500mA

Raspberry Pi 4 Model B 3.0A 1.2A 600mA

Raspberry Pi Zero W 1.2A Limited by PSU, board, and 150mA

connector ratings only.

Raspberry Pi Zero 1.2A Limited by PSU, board, and 100mA

connector ratings only
For more details, please refer to https://www.raspberrypi.org/help/fags/#powerRegs

In addition, RPi also needs an Ethernet network cable used to connect it to a WAN (Wide Area Network).

All these components are necessary for any of your projects to work. Among them, the power supply of at
least 5V/2.5A, because a lack of a sufficient power supply may lead to many functional issues and even
damage your RPi, we STRONGLY RECOMMEND a 5V/2.5A power supply. We also recommend using a SD
Micro Card with a capacity of 16GB or more (which, functions as the RPI's “hard drive”) and is used to store
the operating system and necessary operational files.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/help/faqs/#powerReqs

B ww.freenove.com

4 support@freenove.com

Optional Components

Under normal circumstances, there are two ways to login to Raspberry Pi: 1) Using a stand-alone monitor. 2)

Using a remote desktop or laptop computer monitor “sharing” the PC monitor with your RPi.

Required Accessories for Monitor

If you choose to use an independent monitor, mouse and keyboard, you also need the following accessories:
1. A display with a HDMI interface
2. A Mouse and a Keyboard with an USB interface

As to Pi Zero and Pi Zero W, you also need the following accessories:
1. A Mini-HDMI to HDMI Adapter and Cable.
A Micro-USB to USB-A Adapter and Cable (Micro USB OTG Cable).

2.
3. A USB HUB.
4

USB to Ethernet Interface or USB Wi-Fi receiver.

For different Raspberry Pi Modules, the optional items may vary slightly but they all aim to convert the
interfaces to Raspberry Pi standards.

Monitor

Mouse

Keyboard
Micro-HDMI to HDMI
Adapter & Cable
Micro-HDMI to HDMI
Adapter & Cable
Micro-USB to USB-A
Adapter & Cable
(Micro USB OTG
Cable)

USB HUB

USB to Ethernet
Interface

USB Wi-Fi Receiver

. . Pi Zero . . Pi :
Pi Zero Pi A+ Pi 3A+ Pi B+/2B Pi 4B
W 3B/3B+
Yes (All)
Yes (All)
Yes (All)
Yes No Yes No No No No
No Yes
Yes No Yes No
Yes Yes Yes Yes No No
select one from . Internal
optional , .
two or select two Integration Internal Integration
from two Internal Integration optional

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Required Accessories for Remote Desktop

If you do not have an independent monitor, or if you want to use a remote desktop, you first need to login
to Raspberry Pi through SSH, and then open the VNC or RDP service. This requires the following accessories.

Pi Zero Pi ZeroW Pi A+ Pi 3A+ PiB+/2B Pi 3B/3B+/4B
Micro-USB to USB-A Yes Yes No
Adapter & Cable
(Micro USB OTG
Cable) NO
USB to Ethernet Yes Yes Yes

interface

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Raspberry Pi OS

Automatically Method

You can follow the official method to install the system for raspberry pi via visiting link below:
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2
In this way, the system will be downloaded automatically via the application.

Manually Method

After installing the Imager Tool in the link above. You can also download the system manually first.

Visit https://www.raspberrypi.org/downloads/

Downloads

Raspberry Pi OS (previously called Raspbian) is our official operating system
for all models of the Raspberry Pi.

Use Raspberry Pi Imager for an easy way to install Raspberry Pi OS and other
operating systems to an SD card ready to use with your Raspberry Pi:

e

[F]

aspberry Pi Imager for Windows

Eul

(.

aspberry Pi Imager for mac0S

aspberry Pi Imager for Ubuntu

Eul

Alternatively, use the links below to download OS images which can be manually
copied to an SD card.

Raspberry Pi 05 (previously called
Raspbian)

NOOBS

QOperating System - based on Debian
R

susier

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2
https://www.raspberrypi.org/downloads/

4 support@freenove.com www.freenove.com [l

Raspberry Pi 0S (32-bit) with Raspberry Pi OS (32-bit) with
desktop and recommended desktop
software Image with desktop based an Debian
Image with desktop and recommended Buster
software based on Debian Buster Wersion: May 2020
\ersion: May 2020 Release date: 2020-05-27
Release date: 2020-05; Kernel version: 4.19
Kernel version: 4.18 Size: 1128 MB

ze: 2583 Eelease notes

Release notes
- [® Download Torrent | @ Download ZIP
[Download Torrent | 3 Download ZIP i - S
SHA- b9a5c5321b3145e605b3bcd297cadffc350echlB4488

SHA- fdbdé£5h5hTelfa5e724bdeT47c51055014422920014 236 0afdEfb75a758%0Tbd04
2565: 4d0a19%41c9e73c93dde1

Raspberry Pi 05 (32-bit) Lite

Minimal image based on Debian Buster

Version: May 2020
Release date: 2020-05-27
ernel version: 4.19
ize: 432 MB

Release motes

[® Download Torrent | & Download ZIP

And then the zip file is downloaded.

Write System to Micro SD Card
First, put your Micro SD card into card reader and connect it to USB port of PC.

SAMSUNG 0'zgsn

82 EVO . a,o,O!ul r

-

Then open imager toll. Choose system that you just downloaded in Use custom.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

' Raspberry Pi lmager v1.2 — *

Raspberry Pi

Operating System SD Card

CHOOSE 0s CHOOSE SD CARD

' Raspberry Pi Imager v1.2 — x

Operating System X

ST TSmO aassy 1TT1U.'HEE

LibreELEC >
A Kodi Entertainment Center distribution

Ubuntu >
Choose from Ubuntu Core and Server images

Misc utility images
EEFROM recovery, etc.

Erase
Format card as FAT32

Use custom

D = f® ¢

Select a custom .img from your computer

Choose the SD card. Then click “WRITE".

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

'\ Raspberry Pi Imager v1.2 — >

Raspberry Pi

Operating System

2020-02-13-RASPBIAN-BUSTER-FULL.ZIP CHOOSE SD C...

Enable ssh

If you don’t have a separate monitor, after the system is written successfully, create a folder named “ssh”
under generated boot disk of Micro SD Card.

- boot [H2) ssh

Then remove SD card from card reader and insert it into Raspberry Pi.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Getting Started with Raspberry Pi

Monitor desktop

If you do not have a spare monitor, please skip to next section Remote desktop & VNC. If you have a spare

monitor, please follow the steps in this section.

After the system is written successfully, take out Micro SD Card and put it into the SD card slot of RPi. Then
connect your RPi to the monitor through the HDMI port, attach your mouse and keyboard through the USB
ports, attach a network cable to the network port and finally, connect your power supply (making sure that it
meets the specifications required by your RPi Module Version. Your RPi should start (power up). Later, after
setup, you will need to enter your user name and password to login. The default user name: pi; password:

raspberry. After login, you should see the following screen.
s & = 3 T 0 o

Congratulations! You have successfully installed the RASPBERRY PI OS operating system on your RPi.

Raspberry Pi 4B, 3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can
use the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi
of other models can use wireless remote desktop through accessing an external USB wireless card.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Remote desktop & VNC

If you have logged in Raspberry Pi via display, you can skip to VNC Viewer.

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share
a display, keyboard, and mouse with your PC. Below is how to use:

MAC OS remote desktop and Windows OS remote desktop.

Connect your pi and computer to the router via a network cable.

Network cable Network cable

Raspberry Pi

Router Computer

MAC OS Remote Desktop
Open the terminal and type following command. If this command doesn’t work, please move to next page.

ssh pi@raspberrypi.local
The password is raspberry by default, case sensitive.

@ Terminal Shell Edit View Window Help

®@ 0 %" freenove — ssh pi@raspberrypi.local — 80x24

Last login: Wed Jul 22 16:44:
[freenove@PandeMacBook-Air ~ ssh pi@raspberrypi.local |
piRraspberrypi.local's passw

You may need to type yes during the process.

@ Terminal Shell Edit View Window Help

® @ - freenove — pi@raspberrypi: ~ — ssh pi@raspberrypi.local — 80x24
Last login: Wed Jul 22 16:49:43 on ttys000 =]
[freenove@PandeMacBook-Air ~ % ssh pi@raspberrypi.local]

[pi@raspberrypi.local's password:]
Linux raspberrypi 4.19.58-v7+ #1245 SMP Fri Jul 12 17:25:51 BST 2019 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Wed Jul 22 09:56:01 2020 from fe80::82d:356d:4027:2fc5%wlan®

SSH is enabled and the default password for the 'pi' user has not been changed.

This is a security risk - please login as the 'pi' user and type 'passwd' to set
a new password.

pi@raspberrypi:~ $ JJ

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

You can also use the IP address to log in Pi.
Enter router client to inquiry IP address named “raspberry pi”. For example, | have inquired to my RPi IP
address, and it is “192.168.1.131".

Open the terminal and type following command.
ssh pi@192.168.1.131
When you see pi@raspberrypi:~ $, you have logged in Pi successfully. Then you can skip to next section.

@ Terminal Shell Edit View Window Help

@® @ freenove — pi@raspberrvoi: ~ — ssh pi@192.168.1.131 — 81x44

[freenove@PandeMacBook-Air ~ %|ssh pi@192.168.1.131 B
The authenticity of host '192.168.1.131 (192.168.1.131)' can't be established.
ECDSA key fingerprint is SHA256:95hc761SxQ/+z9TGG57136senETX60yaAaqds1ENpE4.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

| Warning: Permanently added '192.168.1.131' (ECDSA) to the list of known hosts.
[pi192.168.1.131's password:

Linux raspberrypi 4.19.58-v7+ #1245 SMP Fri Jul 12 17:25:51 BST 2019 armv71l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Jul 22 09:56:32 2020 from fe80::82d:356d:4027:2fc5%wland

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk — please login as the 'pi' user and type 'passwd' to set
a new password.

[pi@raspberrypi:~ $ sudo raspi-config

Raspberry Pi 3 Model A Plus Rev 1.0

Raspberry Pi Software Configuration Tool (raspi-config)

1 Change User Password Change password for the current user

2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional settings to match your
5 Interfacing Options Configure connections to peripherals

6 Overclock Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest version

9

About raspi-config Information about this configuration tool

<Finish>

<Select>

Then you can skip to VNC Viewer.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Windows OS Remote Desktop

The windows built-in application remote desktop corresponds to the Raspberry Pi xrdp service.
Download the tool software Putty. Its official address: http://www.putty.org/

Or download it here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html|

Then use net cable to connect your RPi to the same router with your PC. Then put the system Micro SD Card
prepared before into the slot of the RPi and turn on the power supply. Enter router client to inquiry IP address
named “raspberry pi”. For example, my RPi IP address is “192.168.1.108".

Then open Putty, enter the address, select SSH, and then click "OPEN", as shown below:

B® PUTTY Configuration *
Categony:
B- Sgssion | Basic options for your PuTTY session |
¢ Logging . .)
Stepl: enter &3 Temin Specify the destination you want to connect to Stepz_
“‘—-Kﬂﬁbﬂﬂid\ Hast Name (or IP address) Sel SSH
the IP address o —L292463 1108 elect
- Features Connection type:
- Window (O Raw (O Telnet () Rlogin @ S5H () Serial
ﬂppea!ance Load, save or delete a stored session
- Behawviour
... Translation Saved Sessions
- Selection | |
- Colours "
Default Settings
[=)- Connection Load
- Data Save
- Prongy
- Telnet Delete
- Rlogin
(- 55H
.. Serial Step3:
Close window on exit:) . R
(O Aways (O Never (8 Only on clean exit Click “OPEN
About Cpen Cancel

There will appear a security warning at first login. Just click “YES".

PuTTY Security Alert X

WARNING - POTENTIAL SECURITY BREACH!

The server's host key does not match the one PuTTY has
cached in the registry. This means that either the

server administrator has changed the host key, or you
have actually connected to another computer pretending
to be the server,

The new rsa2 key fingerprint is:

ssh-rsa 2048 7a:e1:50:ba:dc:01:87: 1 bia5:f9:d2:d41 2:dG:feiab
If you were expecting this change and trust the new key,
hit Yes to update PuTTY's cache and continue connecting.
If you want to carry on connecting but without updating
the cache, hit No.

If you want to abandon the connection completely, hit
Cancel. Hitting Cancel is the OMLY guaranteed safe
choice.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.putty.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Then there will be a login interface. Login as: pi; password: raspberry. When you enter the password, there
will be no display on the screen. This is normal. After the correct input, press “Enter” to confirm.

I PuTTY (inactive) — O >

Then enter the command line of RPi, which means that you have successfully login to RPi command line
mode.

; pi@raspberrypi: ~ — O W

Next, install a xrdp service, an open source remote desktop protocol(xrdp) server, for RPi. Type the following
command, then press enter to confirm:
sudo apt-get install xrdp

pi@raspberrypi: ~ — O it

Enter "Y", press key “Enter” to confirm.

After the installation is completed, you can use Windows remote desktop applications to login to your RPi.
Use "WIN+R" or search function, open the remote desktop application "mstsc.exe" under Windows, enter the
IP address of RPi and then click “Connect”.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

z) Remote Desktop Connection =

| Remote Desktop
1<) Connection

Computer: | W
Username: Mone specified

fou will be asked for credentials when you connect.

= Show Optio... Connect Help

Later, there will be xrdp login screen. Enter the user name and password of RPi (RPi default user name: pi;
password: raspberry) and click “OK”".

Login to =rdp

Module |sesman-Xvnc |

Lsername |pi

password |xammaaml1

Ok | Cancell Help

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Later, you can enter the RPi desktop system.
$ &=

thinclient driv
es

Here, you have successfully used the remote desktop login to RPi.

Raspberry Pi 4B/3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can
use the wireless remote desktop to control your RPi.
$ &=

thinclient driv
es

Connect WiFi

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

D4l support@freenove.com www.freenove.com [l

VNC Viewer & VNC
Type the following command. And select 5 Interfacing Options=>P3 VNC =>Yes—>OK->Finish. Here Raspberry
Pi may need be restarted, and choose ok. Then open VNC interface.

Then set resolution.
<Back>—> 7 Advanced Options=>A5 Resolution—=>1280x720->OK->Finish.
You can also set other resolutions. If you don’t know what to set, you can set it as 1280x720 first.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com

Then download and install VNC Viewer according to your computer system by click following link:
https://www.realvnc.com/en/connect/download/viewer/

After installation is completed, open VNC Viewer. And click File = New Connection. Then the interface is
shown below.

raspberry pi - Properties - O X

General Options Expert

VNC Server: [192.168.1.117 |

Name: |raspberry p|1 |

Labels

To nest labels, separate names with a forward slash (/)

Enter a label name, or press Down to apply existing labels |

Security

Encryption: Let VMC Server choose ~ |

[#] Authenticate using single sign-on (550) if possible

Authenticate using a smartcard or certificate store if
possible

Privacy
[l Update desktop preview automatically

[ok]| cancel

Enter ip address of your Raspberry Pi and fill in a name. Then click OK.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.realvnc.com/en/connect/download/viewer/

< support@freenove.com

www.freenove.com [l

Then on the VNC Viewer panel, double-click new connection you just created,

File View Help

| Enter a VNC Server address or search

raspberry pi

and the following dialog box pops up.

m Authentication X

VNC Server: 192.168.1.117:5900

Username: |pi |

Password: |....I-I-I-I-. |

Remember password

Catchphrase: Sister logo octopus. Giraffe Gloria time.

Signature: 8b-6b-40-50-f6-9d-8b-f8

Enter username: pi and Password:
LN |

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer

B support@freenove.com

raspberry. And click OK.

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your

VNC View control panel, click right key. And select Properties->Options label->Scaling. Then set proper
scaling.

I8 raspberry pi - Properties - O *

General Options Expert

General

Picture quality: | Automatic ~
[View-only

Scaling

100% w

Preserve aspect ratio

Keys
Pass media keys directly to VNC Server
Pass special keys directly to VNC Server

raspbe Connect
Rename F2
Delete
Duplicate Ctrl+D
Properties... Alt+Enter Cancel

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting.

Raspberry Pi 4B/3B+/3B integrates a Wi-Fi adaptor.If you did not connect Pi to WiFi. You can connect it to
wirelessly control the robot.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

thinclient_driy.

es

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Why “Chapter 0"? Because in program code the first number is 0. We choose to follow this rule. In this chapter,

we will do some necessary foundational preparation work: Start your Raspberry Pi and install some necessary
libraries.

Raspberry Pi OS is based on the Linux Operation System. Now we will introduce you to some frequently used
Linux commands and rules.

First, open the Terminal. All commands are executed in Terminal.

> Terminal

When you click the Terminal icon, following interface appears.

File Edit Tabs Help

pi@raspberrypi:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Note: The Linux is case sensitive.
First, type “Is” into the Terminal and press the “Enter” key. The result is shown below:

File Edit Tabs Help

plfraspberrypi:

The "Is” command lists information about the files (the current directory by default).

Content between “$" and "pi@raspberrypi:” is the current working path. “~" represents the user directory,
which refers to “/home/pi” here.

berrypi: pwd

“cd” is used to change directory. “/” represents the root directory.

aspberrypi: cd fusr
aspberrypi:

-]

pberrypi:
spberrypi:

Later in this Tutorial, we will often change the working path. Typing commands under the wrong directory
may cause errors and break the execution of further commands.

Many frequently used commands and instructions can be found in the following reference table.

Is Lists information about the FILEs (the current directory by default) and entries
alphabetically.

cd Changes directory

sudo + cmd Executes cmnd under root authority

J Under current directory

gcc GNU Compiler Collection

git clone URL | Use git tool to clone the contents of specified repository, and URL in the repository address.
There are many commands, which will come later. For more details about commands. You can refer to:
http://www.linux-commands-examples.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.linux-commands-examples.com/

Now, we will introduce several commonly used shortcuts that are very useful in Terminal.

1. Up and Down Arrow Keys: Pressing “1” (the Up key) will go backwards through the command history and
pressing “V” (the Down Key) will go forwards through the command history.

2. Tab Key: The Tab key can automatically complete the command/path you want to type. When there is only
one eligible option, the command/path will be completely typed as soon as you press the Tab key even you
only type one character of the command/path.

As shown below, under the '~' directory, you enter the Documents directory with the “cd” command. After
typing “cd D", pressing the Tab key (there is no response), pressing the Tab key again then all the files/folders
that begin with “D” will be listed. Continue to type the letters "oc" and then pressing the Tab key, the
“Documents” is typed automatically.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

WiringPi is a GPIO access library written in C language for the used in the Raspberry Pi.

To install the WiringPi library, please open the Terminal and then follow the steps and commands below.
Note: For a command containing many lines, execute them one line at a time.

Enter the following commands one by one in the terminal to install WiringPi:

sudo apt-get update

git clone https://github.com/WiringPi/WiringPi

cd WiringPi

./build

Vel

& O ﬁ_ > K9

File Edit Tabs Help

pifraspberrypi: cd WiringPi1
pli@raspberrypi: ./build

ALl Done.

MOTE: To complle programs
iringP1i

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

Run the gpio command to check the installation:

gpio -v
That should give you some confidence that the installation was a success.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

D4l support@freenove.com www.freenove.com [l

Obtain the Project Code

After the above installation is completed, you can visit our official website (http://www.freenove.com) or our
GitHub resources at (https://github.com/freenove) to download the latest available project code. We provide
both C language and Python language code for each project to allow ease of use for those who are skilled
in either language.

This is the method for obtaining the code:
In the pi directory of the RPi terminal, enter the following command.

(There is no need for a password. If you get some errors, please check your commands.)

0P
X)

After the download is completed, a new folder "Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi" is generated,
which contains all of the tutorials and required code.

This folder name seems a little too long. We can simply rename it by using the following command.

"Freenove Kit" is now the new and much shorter folder name.

$ @ B Fewea

Freenove_Kit

File Edit View Sort Go Tools
O | 55 & | [a] & /> | /home/pi/Freenove_Kit -
= [Name Size Modified Description -
» [| Code [ICode Saturday, December 28,2019 17:39 folder
» D Datasheet l:l Datashest Saturday, December 28,2019 17:39 folder
> |:| Processing l:l Processing Saturday, December 28,2019 17:39 folder
» D Freenove_Three-wheeled_Smart_Ca | | & List_Ultimate_RPi_Kit jpg 939.8 KiB Saturday, December 28,2019 17:39 JPEG image
» D MagPi = readmemd 2.4 KiB Saturday, December 28,2019 17:39 Markdown document
» Dmu,code | 5 Processing pdf 13.1 MiB Saturday, December 28, 2019 17:39 PDF document
b Music E Read Me First pdf 643.8 KiB Saturday, December 28, 2018 17:39 PDF document
> [zal Pictures E Tutorial pdf 16.3 MIB Saturday, December 28,2019 17:39 PDF document
» D Processing = LICENSE.txt 19.1 KiB Saturday, December 28, 2019 17:39 plain text document

If you have no experience with Python, we suggest that you refer to this website for basic information and
knowledge.
https://python.swaroopch.com/basics.html

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/
https://github.com/freenove
https://python.swaroopch.com/basics.html

If you only use C/C++, you can skip this section.

Python code, used in our kits, can now run on Python2 and Python3. Python3 is recommend. If you want to
use Python2, please make sure your Python version is 2.7 or above. Python2 and Python3 are not fully
compatible. However, Python2.6 and Python2.7 are transitional versions to python3, therefore you can also
use Python2.6 and 2.7 to execute some Python3 code.

You can type “python2” or “python3” respectively into Terminal to check if python has been installed. Press
Ctrl-Z to exit.

or "license" for more information.

14:11:084)

or "license" for more information.

If you want to use Python3 in Raspberry Pi, it is recommended to set python3 as default Python by following
the steps below.
1. Enter directory /usr/bin
cd /usr/bin
2. Delete the old python link.
sudo rm python
3. Create new python links to python3.
sudo ln -s python3 python
4. Execute python to check whether the link succeeds.
python
Ldraspberrypi:
iraspberrypi:
aspberrypi: r _
on 3.5 qult, Jan 19 2017, 14:11:04)

or "license" for more information.

"credits'

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

If you want to use Python?2, repeat the steps above and just change the third command to the following:
sudo ln -s python2 python

pi@raspberrypi
' spberrypi
spherrypi

n 2.7.13

"license" T

We will only use the term “Python” without reference to Python2 or Python3. You can choose to use either.
Finally, all the necessary preparations have been completed! Next, we will combine the RPi and electronic
components to build a series of projects from easy to the more challenging and difficult as we focus on
learning the associated knowledge of each electronic circuit.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Chapter 1 LED

This chapter is the Start Point in the journey to build and explore RPi electronic projects. We will start with
simple “Blink” project.

Project 1.1 Blink

In this project, we will use RPi to control blinking a common LED.

Component List

Raspberry Pi GPIO Extension Board & Ribbon Cable
(Recommended: Raspberry Pi 4B / 3B+ / 3B
Compatible: 3A+ /2B / 1B+ / 1A+ / Zero W / Zero)

BERREREEEREEEREREEREERE R ERRERERREREERD
Raspberry Pi GPIO Extension Shield

#3V3 5Ve
#SDA1 5Ve
#SCL1 GNDs
#GPIO4 TXDOs
#GND RXD0e
#GPIO17 GPIO

#GPIO27 GNDs
#GPI022 GPIO23e
#3V3 GPI024+
«MOSI GNDs
eMISO GPIO25«
#SCK CEOa
#GND CEle
#SDA0 SCLO»
#GPIO5 GND=
#GPIO6 GPIO12s
#GPIO13 GNDs
#GPIO19 GPIO16e
#GPI026 GPI020s
#GND GPIO21e

L3INY3HLT

2]
]
3R
N
vﬁ
s
3
28
4
g

x©

=

(Av1dsIa) ISa

Breadboard x1

® © © 0 0 0 9 O O 0 O O O O O O G O O O G G O O O O O G G O O O O O G O OO S OGO S OO OO OO OO GG GGG S S GGG
© © © 0 0 0 0 © 0 0 OO O O O O O O O O OO O SO O SO O S S G GO O
© © © 0 0 0 9 © O 0 0 O O O O O O O O O O O O G OO O O O O O O O O S O OO G O OO O OO O O O OO S O S G GG G e S SO O
© © © 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O OO O S O G O OO OO G OO O OO O O OO O O OO OO O OO OO O O SO OO
® © © 0 0 0 9 0O 0 0 O O O O O O O G O O O O OO O O O O G O O O O O G O OO O O O O OO O O O OO S S OSSO S S OGO S
© © © 0 0 0 9 O 0 0 0 O ° O O O O O O O OO O O OO O G O O S O O O O O OO S G OO O O OO O OO O S S GO GO O S S G O e
©® © © 0 0 0 9 © 0 0 0 O O O O O O O O O O O O O O O O G O O O O O O O O O O O O O O OO OO O OO S O GG GO OO S OGO S
© © © 0 6 0 9 O ° 0 O O O O O O O O O O O O O O OO O OO O O OO O O O OO O O O O OO OO OO OO O O S S OO O S SO OO
©® © © 0 0 0 0 © © 0 0 0 ° ° OO G OO O S OO O OO OO G O O OO S e S GO e
®© © © 0 0 0 0 © © 0 0 0 ° OO O O OO O O OO O OO OO O G GO O O S O G OO

® e o oo ® o 0 0 0 ® o o 0o e o o 0o o ® o 0o 0 0 e o LR ® e o 0 o ® o 0o 0 o . ® e 0 0 0

e o e 0o ® o 0 0 0 ® o o 0 o ® o o 00 ® o 0o 0 o o o 0 0 ® o o 0o o e o o 0o o ® o 0 o 0 ® e 0 0 0

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

LED x1 Resistor 220Q x1 Jumper
Specific quantity depends on the circuit.

—ea. 4444444

In the components list, 3B GPIO, Extension Shield Raspberry and Breadboard are necessary for each project.
Later, they will be reference by text only (no images as in above).

GPIO

GPIO: General Purpose Input/Output. Here we will introduce the specific function of the pins on the Raspberry
Pi and how you can utilize them in all sorts of ways in your projects. Most RPi Module pins can be used as
either an input or output, depending on your program and its functions.

When programming GPIO pins there are 3 different ways to reference them: GPIO Numbering, Physical
Numbering and WiringPi GPIO Numbering.

BCM GPIO Numbering

The Raspberry Pi CPU uses Broadcom (BCM) processing chips BCM2835, BCM2836 or BCM2837. GPIO pin
numbers are assigned by the processing chip manufacturer and are how the computer recognizes each pin.
The pin numbers themselves do not make sense or have meaning as they are only a form of identification.
Since their numeric values and physical locations have no specific order, there is no way to remember them
so you will need to have a printed reference or a reference board that fits over the pins.

Each pin’s functional assignment is defined in the image below:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

. www.freenove.com

>4 support@freenove.com

Pin 1
+3V3 +5V
GPIOZ | SDAL +5V
GPIO3 / 5CLL GND
GPID4 TXDO / GPID 14
GND RXDO [GPIO 15
GPRIO17 GPIO 18
GPIO27 GHND
DS (DISPLAY) @ GPRIO22 GPIO 23
@ . o +3V3 GPIO 24
GFIO10 [MOSI GND
— GFI03 | MISO GPIO 25
g o GPIO11 / SCLE CEO# | GPIO&
gi GND CE1# [GPIOT
;% GPIOD /1D _5D ID 5C{ GRIOL
b GPIOS GND
GFIOE GPIO12
A= GPIO13 GND
gmm;ig GPIO19 / MISO CE2# / GPIO16
GPIO26 MOSI [GPIO20
GND SCLE [GPIO21

Pin 39 Pin 40

For more details about pin definition of GPIO, please refer to http://pinout.xyz/

PHYSICAL Numbering
Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to
the SD card). This is 'Physical Numbering', as shown below:

0000000000000

0000 PO000000>00D000 =

Raspberry Pi A+ / B+ and Raspberry Pi 2 physical pin numbers

(erio @Ground ()sav @sv (o

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://pinout.xyz/

4 support@freenove.com www.freenove.com [l

WiringPi GPIO Numbering
Different from the previous two types of GPIO serial numbers, RPi GPIO serial number of the WiringPi are
numbered according to the BCM chip use in RPi.

wiringPi BCM BCM wiringPi
Pin GPIO Name Header Name GPIO Pin
— — 3.3v 1]2 oSV — — =T
8 R1:0/R2:2 SDA 3|4 5v — — 9.;
9 R1:1/R2:3 SCL 5|6 Ov — —
7 4 GPIO7 7|8 14 15 [=
— — Ov 910 15 16 o o
0 17 GPIOO = 11112 GPIO1 18 1 =
2 R1:21/R2:27 GPIO2 = 13|14 Ov — — g
3 22 GPIO3 = 15116 GPIO4 23 4 = o
— — 3.3v 17|18 | GPIO5 24 5 o &
12 10 MOSI = 19]20 Ov — — o
13 9 MISO = 21|22 GPIO6 25 6 -
14 11 SCLK | 23|24 CEO 8 10 -
— — ov | 2516 CEf 7 11 o
30 0 SDAO 27|28 SCL.O 1 31 +
21 5 GPlIO.21 | 29|30 oV ‘;h
22 6 GPIO022 31|32 GPIO26 12 26 o
23 13 GPIO.23 = 33|34 oV N
24 19 GPIO24 35|36 GPIO27 16 27 ?
25 26 GPIO25 37|38 GPIO28 20 28 —

oV 39140 GPIO29 21 29 O

wirir?gPi BCM Name Header Name BCM wirir_19Pi

Pin GPIO GPIO Pin

(For more details, please refer to https://projects.drogon.net/raspberry-pi/wiringpi/pins/)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/

You can also use the following command to view their correlation.
gpio readall

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Circuit

First, disconnect your RPi from the GPIO Extension Shield. Then build the circuit according to the circuit and
hardware diagrams. After the circuit is built and verified correct, connect the RPi to GPIO Extension Shield.
CAUTION: Avoid any possible short circuits (especially connecting 5V or GND, 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause
permanent damage to your RPi!

Schematic diagram

PHYSICAL GPIO Numbering

The code uses this one.

BCM GPIO Numbering | |

3.3V 5V
—3{SDA1 TXDO }—&
—245CL1 RXDO }-10
—LAGPI04 GPIO18 12—
111GPIO17 GP1023}-16
, 31GPI027 GPI024}-18
2 {GPI022 GPI025}22
§ B 19 fmosi CEO 24—
21Imiso CE1{26. +
231scLk SCLO}28-
~2L1SDAD GPIO12}-32— ‘ 1
i -291GPIO5 GPIO16 (30— o
¥ LEDI —31—‘GP|06 GPIO20 (38 |
331GPI013 GPI1021}40 | /
%GPIO& ,' ‘ /
GP1026 Raspberry Pi ! 2 1 2
GPIO Extension Shield ‘
GND s
L

Hardware connection. If you need any support, please contact us via: support@free

DSI (DISPLAY

& Il

ot

] P e

Raspberry Pi GPIO Extension Shield

REREERRRRRRERRRRRERRRERRRRRERERRERERRRRRE L

Note:
Do NOT rotate Raspberry Pi to change the way of this connection.
Please plug T extension fully into breadboard.

The connection of Raspberry Pi 400 and T extension board is as below. Don’t reverse the ribbon.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4l support@freenove.com

&
I:

&) eI EIEDE e

JJJJDDDDDD.DDW

| [|
bl)"z ?jQD@--
@‘(’” ’{, 6 ""4” '(Alt ctrl 1 potp
| L « tome | | 4 pgon ' — nd

derasetititaaneie

1

T ST ITT TSI

If you have fan, you can connect it to 5V GND of breadboard.

Future hardware connection diagrams will only show that part of breadboard and GPIO Extension Shield.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Component knowledge

LED

An LED is a type of diode. All diodes only work if current is flowing in the correct direction and have two Poles.
An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power
source and the shorter pin is connected to the negative (-) output, which is also referred to as Ground (GND).
This type of component is known as “Polar” (think One-Way Street).

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode
is higher than its negative electrode and there is a narrow range of operating voltage for most all common
diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burnt out.

-

/y LED Voltage Maximum current Recommended current

21 2 Red 1.9-22V 20mA 10mA

Green 29-34V 10mA 5mA

- - Blue 29-34V 10mA 5mA
-+ Volt ampere characteristics conform to diode

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A
resistor with a specified resistance value must be connected in series to the LED you plan to use.

Resistor

Resistors use Ohms (Q) as the unit of measurement of their resistance (R). 1IMQ=1000kQ, 1kQ=1000Q.

A resistor is a passive electrical component that limits or regulates the flow of current in an electronic circuit.
On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the
presence of a resistor in a circuit diagram or schematic.

1

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details of
resistor color codes, please refer to the card in the kit package.

With a fixed voltage, there will be less current output with greater resistance added to the circuit. The
relationship between Current, Voltage and Resistance can be expressed by this formula: I=V/R known as
Ohm'’s Law where | = Current, V = Voltage and R = Resistance. Knowing the values of any two of these allows
you to solve the value of the third.

In the following diagram, the current through R1 is: I=U/R=5V/10kQ=0.0005A=0.5mA.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a

metal object or bare wire) this is a Short and results in high current that may damage the power supply and
electronic components.

Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which direction
you insert them into a circuit, it will work the same)

Breadboard

Here we have a small breadboard as an example of how the rows of holes (sockets) are electrically attached.
The left picture shows the ways the pins have shared electrical connection and the right picture shows the
actual internal metal, which connect these rows electrically.

GPIO Extension Board
GPIO board is a convenient way to connect the RPi I/O ports to the breadboard directly. The GPIO pin
sequence on Extension Board is identical to the GPIO pin sequence of RPi.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Code

According to the circuit, when the GPIO17 of RPi output level is high, the LED turns ON. Conversely, when the
GPIO17 RPi output level is low, the LED turns OFF. Therefore, we can let GPIO17 cycle output high and output
low level to make the LED blink. We will use both C code and Python code to achieve the target.

CCode 1.1.1 Blink

First, enter this command into the Terminal one line at a time. Then observe the results it brings on your
project, and learn about the code in detail.

If you want to execute it with editor, please refer to section Code Editor to configure.

If you have any concerns, please contact us via: support@freenove.com

It is recommended that to execute the code via command line.

1. If you did not update wiring pi, please execute following commands one by one.

sudo apt-get update

git clone https://github.com/WiringPi/WiringPi

cd WiringPi

./build

2. Use cd command to enter 01.1.1_Blink directory of C code.

cd ~/Freenove_Kit/Code/C_Code/01.1.1_Blink

3. Use the following command to compile the code “Blink.c” and generate executable file “Blink”.

“I” of “lwiringPi” is low case of “L".

gcc Blink.c -o Blink -lwiringPi

4. Then run the generated file “blink”.

sudo ./Blink

Now your LED should start blinking! CONGRATUALTIONS! You have successfully completed your first RPi
circuit!

5O M

File Edit Tabs Help

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

B www.freenove.com >4l support@freenove.com

You can also use the file browser. On the left of folder tree, right-click the folder you want to enter, and click
"Open in Terminal”.

01.1.1_Blink

File Edit View Sort Go Tools

- nlEe §§| a & /" /home/pi/Freenove_Kit/Code/C_Code/01.1.1_Blink

-

» [2]Downloads Name Size lodified
b []ESP32 £ Blinkc 966 bytes Saturday,
< || Freenove Kit = Blink 8.0KiB Wednesde
= [] Code | \E, Blinko 1.4 KiB Thursday,
v [|C_Code
b []00.0.0_Hello

— Open in New Window
<No subfolders= = : :
Open in Terminal
e P an a2 e

You can press “Ctrl+C” to end the program. The following is the program code:

finclude <wiringPi.h>
#include <stdio.h>
#define ledPin 0 //define the led pin number
void main(void)
{
printf ("Program is starting ... \n”);
wiringPiSetup(); //Initialize wiringPi.
pinMode (1edPin, OUTPUT) ;//Set the pin mode
printf("Using pin%d\n”, %ledPin) ; //Output information on terminal
while (1) {
digitalWrite(ledPin, HIGH); //Make GPIO output HIGH level
printf(“led turned on >>>\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second
digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf(“led turned off <<{\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second
}
}

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

www.freenove.com .

In the code above, the configuration function for GPIO is shown below as:
This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK. Note that only
wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK
output modes.

This function has no effect when in Sys mode. If you need to change the pin mode, then you can do it with

the gpio program in a script before you start your program

Writes the value HIGH or LOW (1 or 0) to the given pin, which must have been previously set as an output.

For more related wiringpi functions, please refer to http://wiringpi.com/reference/

GPIO connected to ledPin in the circuit is GPIO17 and GPIO17 is defined as 0 in the wiringPi numbering. So
ledPin should be defined as 0 pin. You can refer to the corresponding table in Chapter O.
! #tdefine ledPin 0 //define the led pin number
GPIO Numbering Relationship

WingPi BCM(Extension) Physical

BCM(Extension) | WingPi

3.3V
SDA1
SCL1
GPIO4
GND
GPIO17
GPIO27
GPI1022
3.3V
GPIO10/MQSI)
GPIO9/MOIS
GPIO11/SCLK
GND
GPIO0/SDAO
GPIOS5
GPIO6
GPIO13
GPIO19
GPI026
GND

oV
5V
GND
GPI014/TXDO
GPIO15/RXD0
GPIO18
GND
GPI023
GP1024
GND
GP1025
GPIO8 /CEO
GPIO7 CE1
GPIO1 /SCLO
GND
GPIO12
GND
GPIO16
GP1020
GPI021

In the main function main(), initialize wiringPi first.
- wiringPiSetup(); //Initialize wiringPi.

After the wiringPi is initialized successfully, you can set the ledPin to output mode and then enter the while
loop, which is an endless loop (a while loop). That is, the program will always be executed in this cycle, unless
it is ended because of external factors. In this loop, use digitalWrite (ledPin, HIGH) to make ledPin output high
level, then LED turns ON. After a period of time delay, use digitalWrite(ledPin, LOW) to make ledPin output low

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/

B ww.freenove.com

>4 support@freenove.com

level, then LED turns OFF, which is followed by a delay. Repeat the loop, then LED will start blinking.

pinMode (1edPin, OUTPUT) ;//Set the pin mode
printf("Using pin%d\n”, %ledPin) ;
while (1) {
digitalWrite(ledPin, HIGH);
printf(“led turned on >>>\n”);
delay (1000) ;
digitalWrite (IedPin, LOW);
printf(“led turned off <<<\n”);
delay (1000) ;

//0utput information on terminal

//Make GPIO output HIGH level

//Output information on terminal
//Wait for 1 second

//Make GPIO output LOW level

//Output information on terminal

//Wait for 1 second

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Now, we will use Python language to make a LED blink.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via:

1. Use cd command to enter 01.1.1_Blink directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/01.1.1_Blink

2. Use python command to execute python code blink.py.

python Blink.py

The LED starts blinking.

File Edit Tabs Help

Freenove_Kit/Code/Python_Code/81.1.1 Blink/

You can press “Ctrl+C” to end the program. The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3

4 ledPin = 11 # define ledPin

5

6 def setup():

7 GPIO0. setmode (GPIO0. BOARD) # use PHYSICAL GPIO Numbering

8 GPIO. setup(ledPin, GPIO.OUT) # set the ledPin to OUTPUT mode

9 GPIO. output (ledPin, GPIO.LOW) # make ledPin output LOW level

10 print (using pin%d’ %ledPin)

11

12 def loop():

13 while True:

14 GPIO0. output (1edPin, GPIO.HIGH) # make ledPin output HIGH level to turn on led
15 print (led turned on >»>>) # print information on terminal
16 time. sleep(1) # Wait for 1 second

17 GPIO. output (1edPin, GPIO.LOW) # make ledPin output LOW level to turn off led
18 print (' led turned off <<<)

19 time. sleep(1) # Wait for 1 second

20

21 def destroy():

22 GPI0. cleanup () # Release all GPIO

23

24 if name == main ’: # Program entrance

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

print (Program is starting ... \n’)

setup ()

try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

About RPi.GPIO:

This is a Python module to control the GPIO on a Raspberry Pi. It includes basic output function and input
function of GPIO, and functions used to generate PWM.

Sets the mode for pin serial number of GPIO.

mode=GPIO.BOARD, which represents the GPIO pin serial number based on physical location of RPi.
mode=GPIO.BCM, which represents the pin serial number based on CPU of BCM chip.

Sets pin to input mode or output mode, “pin” for the GPIO pin, “mode” for INPUT or OUTPUT.

Sets pin to output mode, “pin” for the GPIO pin, “mode” for HIGH (high level) or LOW (low level).
For more functions related to RPi.GPIO, please refer to:
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

“import time” time is a module of python.
https://docs.python.org/2/library/time.html?highlight=time%20time#module-time

In subfunction setup(), GPIO.setmode (GPIO.BOARD) is used to set the serial number for GPIO based on
physical location of the pin. GPIO17 uses pin 11 of the board, so define ledPin as 11 and set ledPin to output
mode (output low level).

ledPin = 11 # define ledPin

def setup():
GPI0. setmode (GPIO0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(ledPin, GPIO.OUT) # set the ledPin to OUTPUT mode
GPIO. output (1edPin, GPIO.LOW) # make ledPin output LOW level
print (using pin%d’ %ledPin)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
https://docs.python.org/2/library/time.html?highlight=time%20time#module-time

4 support@freenove.com www.freenove.com [l

GPIO Numbering Relationship
WingPi BCM(Extension) Physical BCM(Extension) | WingPi
3.3V 5V
SDA1 5V
SCL1 GND
GPIO4 GPIO14/TXD0O
GND GPIO15/RXDO
GPIO17 GPIO18
GPIO27 GND
GP1022 GP1023
3.3V GP1024
GPIO10/MQOSI) GND
GPIO9/MOIS GPI025
GPIO11/SCLK GPIO8 /CEO
GND GPIO7 CE1
GPIO0/SDAO GPIO1 /SCLO
GPIO5 GND
GPIO6 GPIO12
GPIO13 GND
GPIO19 GPIO16
GPI026 GPI020
GND GPI021

In loop(), there is a while loop, which is an endless loop (a while loop). That is, the program will always be
executed in this loop, unless it is ended because of external factors. In this loop, set ledPin output high level,
then the LED turns ON. After a period of time delay, set ledPin output low level, then the LED turns OFF, which
is followed by a delay. Repeat the loop, then LED will start blinking.
def loop():
while True:
GPIO. output (ledPin, GPIO.HIGH) # make ledPin output HIGH level to turn on led

print (led turned on >>>") # print information on terminal

time. sleep(1) # Wait for 1 second

GPIO. output (ledPin, GPIO.LOW) # make ledPin output LOW level to turn off led
print (led turned off <<<)

time. sleep (1) # Wait for 1 second

Finally, when the program is terminated, subfunction (a function within the file) will be executed, the LED will
be turned off and then the 10 port will be released. If you close the program Terminal directly, the program
will also be terminated but the finish() function will not be executed. Therefore, the GPIO resources will not
be released which may cause a warning message to appear the next time you use GPIO. Therefore, do not
get into the habit of closing Terminal directly.

def finish():
GPIO. cleanup () # Release all GPIO

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you want to use other editor to edit and execute the code, you can learn them in this section.

Here we will introduce three kinds of code editor: vi, nano and Geany. Among them, nano and vi are used to
edit files directly in the terminal. And Geany is an independent editing software, which is recommended for
beginner. We will use the three editors to open an example code "Hello.c" respectively. First we will show how
to use vi and nano editor:

First, use cd command to enter the sample code folder.
cd ~
cd ~/Freenove_Kit/Code/C_Code/00.0.0_Hello

Use the vi editor to open the file "Hello.c”, then press ": " and “Enter” to exit.
vi Hello.c

As is shown below:

File Edit Tabs Help

<stdio.h>

printf("hello, world!\n");

return 1;

"Hello.c" [Incomplete last line] 7 lines,

Use the nano editor to open the file "Hello.c", then press " Ctrl+X " to exit.
nano Hello.c

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

As is shown below:

File Edit Tabs Help
GNU nano 2.7.4 File: Hello.c

Hinclude <stdio.h>

main(){
printf("hello, world!“n");

1:

Use the following command to compile the code to generate the executable file “Hello”.
gcc Hello.c -o Hello

Use the following command to run the executable file “Hello”.

sudo ./Hello

After the execution, "Hello, World!" is printed out in terminal.

pl@raspberrypi:

pi@raspberrypi:

2LLO, WOrLo

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com

geany
Next, learn to use the Geany editor. Use the following command to open the Geany in the sample file

"Hello.c" file directory path.

Or find and open Geany directly in the desktop main menu, and then click File>Open to open the
"Hello.c", Or drag "Hello.c" to Geany directly.

I@;I @? @ ! * @ [;;![pi@raspberr}f_pi: ~fFT... H [0

Proegramming Arduino IDE

42 BlueJ Java IDE

ammer's Editor
i Greenfoot Java IDE

* Mathematica
MNode-RED

Tl:] Electronics >

File Edit Search View Document Project Build Tools Help

€ ! [- ¥
O -8 -48 @x ¢«-> §¢-9Y H 4|0 | 1% B
j Symbols Il |Hel|oic x|
~ ¢ Functions ; #include <stdio.h> A
¢ main 3] 3 @int main(){
4 ——printf("hello, world!\n");
5 —
6 ~—return 1;
-}
-
4 »
- 16:16:29: This is Geany 1.33.
Status 16:16:29: Setting Tabs indentation mode for /home/pi/Freenove_Kit/Code/C_Code/00.0.0_Hello/Hello.c.
16:16:29: Setting Tabs indentation mode for /home/pi/Freenove_Kit/Code/C_Code/00.0.0_Hello/Hello.c.
N 16:16:29: File /home/pi/Freenove_Kit/Code/C_Code/00.0.0_Hello/Hello.c opened(1).
Compiler
S

line:7 /7 co:1 sel:0 INS TAB mode:CRLF encoding:UTF-8 filetype:C scope: main

If you want to create a new code, click File>New—>File>Save as (name.c or name.py). Then write the code.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Generate an executable file by clicking menu bar Build->Build, then execute the generated file by clicking

menu bar Build->Execute.

Build Tools Help
%3 Compile

®

Make

Make Custom Target...

Make Object

7 Next Error
Previous Error

#% Execute

% Set Build Commmands

Shift+F9
Shift+Ctrl+F9
Shift+F8

Build Tools Help
93 Compile

W Build

Make

Make Custom Target. .

Make Object

% Next Error
Previous Error

o
ST
v, i

¥ Set Build Commands

=N
-9

Shift+F9

Shift+Ctrl+F9
Shift+F8

After the execution, a new terminal window will output the characters “Hello, World!”, as shown below:

File Edit Tabs Help
hello, world

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B ww.freenove.com

>4 support@freenove.com

You can click Build->Set Build Commands to set compiler commands. In later projects, we will use various
compiler command options. If you choose to use Geany, you will need change the compiler command here.

As is shown below:

Set Build Commands

Label
C commands

1. _ | .t-i'.‘,ompile
2. Build
3. Lint

Independent commands

1. Make

2. Make Custom Target...
3. Make Object

4.

Note: Item 2 opens a dialogue and appends the response to the command.

Error regular expression:

Error regular expression:

Execute commands
1. Execute
2.

Command

Working directory ~ Reset

gce -Wall -¢ "%f" -lwiringPi d
gee -Wall -0 "%e" "%f" -lwiringPi 4
cppcheck -language=c —-enable=y{ d
Pid
make 2
make 2
make %e.0 &
3
i
e 2
=
%d %e, %I, %p, %l are substituted in command and directory fields, see manual for details.
Cancel oK

Here we have identified three code editors: vi, nano and Geany. There are also many other good code editors
available to you, and you can choose whichever you prefer to use.

In later projects, we will only use terminal to execute the project code. This way will not modify the code by

mistake.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Community app

There are videos about projects shared by others on this APP, as well as videos of our company's products.
You can also share your own videos on this APP. In addition, you can also chat with other users on this video.
You are welcome to use this APP. You can download it on google play:
https://play.google.com/store/apps/details?id=com.robotech.boogoo

R % & 306 =80 15:24 g N3 & 301 881 15:27

09/28 10:14

‘ Hi, 'm WOW, we can chat now.

ooy 1

09/28 18:24

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://play.google.com/store/apps/details?id=com.robotech.boogoo

B www freenove.com >4 support@freenove.com

Chapter 2 Buttons & LEDs

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.
In last section, the LED module was the output part and RPI was the control part. In practical applications, we
not only make LEDs flash, but also make a device sense the surrounding environment, receive instructions
and then take the appropriate action such as turn on LEDs, make a buzzer beep and so on.

Next, we will build a simple control system to control an LED through a push button switch.

Project 2.1 Push Button Switch & LED

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our
LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 | Resistor 220Q | Resistor 10kQ | Push
GPIO Extension Board & Wire x1 x1 X2 Button
Breadboard x1 Switch x1

Jumper Wire | .

—- -

Please Note: In the code “button” represents switch action.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m 4 support@freenove.com www.freenove.com [l

Component knowledge

Push Button Switch
This type of Push Button Switch has 4 pins (2 Pole Switch). Two pins on the left are connected, and both left
and right sides are the same per the illustration:

1

When the button on the switch is pressed, the circuit is completed (your project is Powered ON).

Circuit

Schematic diagram

33V 5V §If(2)m
—31SDA1 TXDO}-8
—2.1sCL1 RXDO g R3 is used to limit current
—LlGPI04 GPIO18 A= .
% GPIO17 GPI1023 g B to protect GPIO 18, if you
GPIO27 GPI024] -
g GPIO22 CPI025 122 L] set |t.to output HIGH level
4. 19 1vos CEO |24~ bv mistake.
-21MISO CE1{26. 5
231scLk SCLo28-
2L1spao GPIO12 |32~
Y 29.1GPI05 GPI016 |36
2 S11GPIO6 GPI020 |38~
331GPI013 GPI021 40
-35.1GPI019
18 GPI1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via:

support@freenove.com

- ° e o 0 ® o 0 0 0 . U q
- 2

-

- (2]

- c LR o ® ¢ 000000000000 00 s 4
- o L . ® 0 0 0 00 00 00 0 0 0 0 0 e 4
-] L. ° ®© o0 00000000000 0 0 4
= = oo 9

- (] [=¥=] o~ ® 0 000000000 00 0 0 4
= B <X =

- o —e I~ ® e 0000 000000 00 0 0 4
= o ©

— E <

-) =} ® o 0 0 . . ® 000 00000000000 0 0 4
- T = e Jlllg=e ¢ ¢ o o o o Il ¢ ¢ ¢ o o 0 0 0 0 0 0 0 o
- © ® © 0 0 6 5 00 08 06 000 s 000 e e e e e e e e e e 4
- ? ° . ® 6o e 0000 00 00 0 0 4
- g - . ® o 0 0 0 0 0 0 0 0 0 0 0 ¢
- Q

- 1]

- ©

— x ® e 0 00 ® o o 00 q
: * o o 0 0 ® e o 0 0 *® e ° 0 L

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

There are two kinds of push button switch in this kit.

The smaller push button switches are contained in a plastic bag.

Code

This project is designed for learning how to use Push Button Switch to control an LED. We first need to read
the state of switch, and then determine whether to turn the LED ON in accordance to the state of the switch.
C Code 2.1.1 ButtonLED

First, observe the project result, then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 02.1.1_ButtonLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/02.1.1_ButtonLED

2. Use the following command to compile the code “ButtonLED.c” and generate executable file “ButtonLED”
gcc ButtonLED.c —-o ButtonLED -lwiringPi

3. Then run the generated file “ButtonLED”.

sudo ./ButtonLED

Later, the terminal window continues to print out the characters “led off--". Press the button, then LED is
turned on and then terminal window prints out the "led on---". Release the button, then LED is turned off and
then terminal window prints out the "led off---". You can press "Ctrl+C" to terminate the program.

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3

4 #define ledPin 0 //define the ledPin

5 #define buttonPin 1 //define the buttonPin

6

7 void main(void)

8 {

9 printf ("Program is starting ... \n”);

10

11 wiringPiSetup(); //Initialize wiringPi.

12

13 pinMode (1edPin, OUTPUT); //Set ledPin to output

14 pinMode (buttonPin, INPUT);//Set buttonPin to input

15

16 pullUpDnControl (buttonPin, PUD UP); //pull up to HIGH level
17 while (1) {

18 if(digitalRead (buttonPin) == LOW) { //button is pressed
19 digitalWrite(ledPin, HIGH); //Make GPIO output HIGH level
20 printf ("Button is pressed, led turned on >>>\n”); //Output information on
21 terminal

22 1

23 else { //button is released

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf ("Button is released, led turned off <<<\n”):; //Output information on

terminal

In the circuit connection, LED and Button are connected with GPIO17 and GPIO18 respectively, which
correspond to 0 and 1 respectively in wiringPl. So define ledPin and buttonPin as 0 and 1 respectively.

#tdefine ledPin 0 //define the ledPin

#tdefine buttonPin 1 //define the buttonPin
In the while loop of main function, use digitalRead(buttonPin) to determine the state of Button. When the
button is pressed, the function returns low level, the result of “if" is true, and then turn on LED. Or, turn off

LED.
if(digitalRead (buttonPin) == LOW) { //button has pressed down
digitalWrite (1edPin, HIGH); //led on
printf("led on...\n");
}
else { //button has released
digitalWrite (1edPin, LOW); //led off
printf(". .. led off\n”);
}
Reference:
This function returns the value read at the given pin. It will be “HIGH” or “LOW"(1 or 0) depending on the
logic level at the pin.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B ww.freenove.com

>4 support@freenove.com

Python Code 2.1.1 ButtonLED

First, observe the project result, then learn about the code in detail. Remember in code “button” = switch

function
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 02.1.1_ButtonLED directory of Python code.

2. Use Python command to execute btnLED.py.

Then the Terminal window continues to show the characters “led off---", press the switch button and the LED
turns ON and then Terminal window shows "led on--". Release the button, then LED turns OFF and then the

terminal window text "led off--" appears. You can press "Ctrl+C" at any time to
The following is the program code:

terminate the program.

import RPi.GPIO as GPIO

define ledPin
define buttonPin

ledPin = 11
buttonPin = 12

def setup():

GPI0. setmode (GP10. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up_ down=GPIO.PUD UP)
INPUT mode

def loop():
while True:
if GPIO. input (buttonPin)==GPI0.LOW: # if button is pressed
GPIO. output (1edPin, GPTO. HIGH)
print (led turned on >>>")

turn on led
else : # if button is relessed

GPIO0. output (1edPin, GPIO. LOW) # turn off led
print (led turned off <<<7)

def destroy():

GPI0. cleanup () # Release GPIO resource

if name == main_ : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

set buttonPin to PULL UP

print information on terminal

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

In subfunction setup (), GPIO.setmode (GPIO.BOARD) is used to set the serial number of the GPIO, which is
based on physical location of the pin. Therefore, GPIO17 and GPIO18 correspond to pinll and pinl?2
respectively in the circuit. Then set ledPin to output mode, buttonPin to input mode with a pull resistor.
ledPin = 11 # define ledPin
buttonPin = 12 # define buttonPin

def setup():

GPIO0. setmode (GPIO0. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # set buttonPin to PULL UP
INPUT mode

The loop continues endlessly to judge whether the key is pressed. When the button is pressed, the
GPIO.input(buttonPin) will return low level, then the result of “if” is true, ledPin outputs high level, LED is turned
on. Otherwise, LED will be turned off.
def loop():
while True:
if GPIO. input (buttonPin)==GPI10.LOW: # if button is pressed
GPIO. output (ledPin, GPI0. HIGH) # turn on led

print (led turned on >>>’) # print information on terminal
else : # if button is released

GPIO. output (ledPin, GPI0. LOW) # turn off led

print (led turned off <<<7)

Execute the function destroy (), close the program and release the occupied GPIO pins.

About function GPIO.input ():

This function returns the value read at the given pin. It will be “HIGH” or “LOW"(1 or 0) depending on the

logic level at the pin.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

Project 2.2 MINI Table Lamp

We will also use a Push Button Switch, LED and RPi to make a MINI Table Lamp but this will function differently:
Press the button, the LED will turn ON, and pressing the button again, the LED turns OFF. The ON switch
action is no longer momentary (like a door bell) but remains ON without needing to continually press on the
Button Switch.

First, let us learn something about the push button switch.

Debounce a Push Button Switch

When a Momentary Push Button Switch is pressed, it will not change from one state to another state
immediately. Due to tiny mechanical vibrations, there will be a short period of continuous buffeting before it
stabilizes in a new state too fast for Humans to detect but not for computer microcontrollers. The same is true
when the push button switch is released. This unwanted phenomenon is known as “bounce”.

press I sltable rellease| stable
U
U |
| |
Ideal state I }
| | N
u | | t
™ |
| |
Virtual state | | ‘
| N
| 7
I

Therefore, if we can directly detect the state of the Push Button Switch, there are multiple pressing and
releasing actions in one pressing cycle. This buffeting will mislead the high-speed operation of the
microcontroller to cause many false decisions. Therefore, we need to eliminate the impact of buffeting. Our
solution: to judge the state of the button multiple times. Only when the button state is stable (consistent) over
a period of time, can it indicate that the button is actually in the ON state (being pressed).

This project needs the same components and circuits as we used in the previous section.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

I o< support@freenove.com www.freenove.com [l

Code

In this project, we still detect the state of Push Button Switch to control an LED. Here we need to define a
variable to define the state of LED. When the button switch is pressed once, the state of LED will be changed
once. This will allow the circuit to act as a virtual table lamp.

C Code 2.2.1 Tablelamp

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 02.2.1_Tablelamp directory of C code.

2. Use the following command to compile “Tablelamp.c” and generate executable file “Tablelamp”.

3. Tablelamp: Then run the generated file “Tablelamp”.

When the program is executed, press the Button Switch once, the LED turns ON. Pressing the Button Switch

again turns the LED OFF.
finclude <wiringPi.h>
#include <stdio.h>

#define ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

int ledState=LOW; //store the State of led

int buttonState=HIGH; //store the State of button

int lastbuttonState=HIGH;//store the lastState of button

long lastChangeTime; //store the change time of button state
long captureTime=50; //set the stable time for button state
int reading;

int main(void)

{

printf ("Program is starting...\n”);

wiringPiSetup(); //Initialize wiringPi.

pinMode (1edPin, OUTPUT); Set ledPin to output
pinMode (buttonPin, INPUT); Set buttonPin to input

pullUpDnControl (buttonPin, PUD UP); //pull up to high level
while (1) {
reading = digitalRead (buttonPin); //read the current state of button
if (reading != lastbuttonState) { //if the button state has changed, record the time
point

lastChangeTime = millis();

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4l support@freenove.com

//if changing-state of the button last beyond the time we set, we consider that
//the current button state is an effective change rather than a buffeting
if(millis() - lastChangeTime > captureTime) {
//if button state is changed, update the data
if (reading != buttonState) {
buttonState = reading;
//if the state is low, it means the action is pressing
if (buttonState == LOW) {
printf("Button is pressed!\n”);
ledState = !ledState; //Reverse the LED state
if (ledState) {
printf (“turn on LED ...\n");
}
else {

printf (“turn off LED ...\n”);

}

//if the state is high, it means the action is releasing
else {

printf("Button is released!\n”);

}
digitalWrite (ledPin, ledState) ;
lastbuttonState = reading;

return 0;

This code focuses on eliminating the buffeting (bounce) of the button switch. We define several variables to
define the state of LED and button switch. Then read the button switch state constantly in while () to determine
whether the state has changed. If it has, then this time point is recorded.

reading = digitalRead (buttonPin); //read the current state of button
if(reading != lastbuttonState) {
lastChangeTime = millis();

This returns a number representing the number of milliseconds since your program called one of the
wiringPiSetup functions. It returns to an unsigned 32-bit number value after 49 days because it
“wraps” around and restarts to value 0.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m DX support@freenove.com www.freenove.com [l

Then according to the recorded time point, evaluate the duration of the button switch state change. If the
duration exceeds captureTime (buffeting time) we have set, it indicates that the state of the button switch has
changed. During that time, the while () is still detecting the state of the button switch, so if there is a change,
the time point of change will be updated. Then the duration will be evaluated again until the duration is
determined to be a stable state because it exceeds the time value we set.

if(millis() - lastChangeTime > captureTime) {
//if button state is changed, update the data.
if(reading != buttonState) {
buttonState = reading;

Finally, we need to judge the state of Button Switch. If it is low level, the changing state indicates that the

button Switch has been pressed, if the state is high level, then the button has been released. Here, we change

the status of the LED variable, and then update the state of the LED.
if (buttonState == LOW) {

printf ("Button is pressed!\n”);
ledState = !ledState; //Reverse the LED state
if (ledState) {
printf(“turn on LED ...\n");
}
else {

printf (“turn off LED ...\n”);

}
//if the state is high, it means the action is releasing
else {

printf("Button is released!\n”);

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 54 support@freenove.com [EENEE

Python Code 2.2.1 Tablelamp

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 02.2.1_Tablelamp directory of Python code

2. Use python command to execute python code “Tablelamp.py”.

When the program is executed, pressing the Button Switch once turns the LED ON. Pressing the Button Switch
again turns the LED OFF.
import RPi.GPIO as GPIO

ledPin = 11 # define ledPin
buttonPin = 12 # define buttonPin
ledState = False

def setup():

GPI0. setmode (GP10. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup (ledPin, GPIO.OUT) # set ledPin to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # set buttonPin to PULL UP
INPUT mode

def buttonEvent (channel) : # When button is pressed, this function will be executed
global ledState
print (buttonEvent GPI0%d %channel)
ledState = not ledState
if ledState :
print (Led turned on »>>")
else :
print (Led turned off <<<7)
GPIO. output (ledPin, ledState)

def loop():
#Button detect
GPIO0. add_event_detect (buttonPin, GPI0. FALLING, callback = buttonEvent, bouncetime=300)
while True:

pass

def destroy():

GPIO0. cleanup () # Release GPIO resource
if name == main_ : # Program entrance

print (Program is starting...’)

setup ()

try:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Loop ()

except KeyboardInterrupt: # Press ctrl-c¢ to end the program.

destroy ()

RPi.GPIO provides us with a simple but effective function to eliminate “jitter”, that is GPIO.add_event_detect().
It uses the callback function. Once it detects that the buttonPin has a specified action FALLING, it executes a
specified function buttonEvent(). In the function buttonEvent, each time the ledState is reversed, the state of
the LED will be updated.
def buttonEvent (channel) : # When button is pressed, this function will be executed

global ledState

print (buttonEvent GPI0%d’ %channel)

ledState = not ledState

if ledState :

print (Led turned on >>»>)

else :
print (Led turned off <<<7)
GPIO. output (1edPin, ledState)

def loop():
#Button detect
GPIO0. add_event_detect (buttonPin, GPI0. FALLING, callback = buttonEvent, bouncetime=300)
while True:

pass

Of course, you can also use the same programming idea in C code above to achieve this target.

This is an event detection function. The first parameter specifies the 10 port to be detected. The second
parameter specifies the action to be detected. The third parameter specifies a function name; the function
will be executed when the specified action is detected. The fourth parameter is used to set the jitter time.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Chapter 3 LED Bar Graph

We have learned how to control one LED to blink. Next, we will learn how to control a number of LEDs.

Project 3.1 Flowing Water Light

In this project, we use a number of LEDs to make a flowing water light.

Component List

Raspberry Pi (with 40 GPIO) x1 Bar Graph LED x1 Resistor 220Q x10
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x 1

—-

Component knowledge

Let us learn about the basic features of these components to use and understand them better.

Bar Graph LED

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom
are paired to identify each LED like the single LED used earlier.

1 20 1—{>Ezo
2 19 219
3 18 3018
4 17 417
5 16 5 16
6 15 6~ 15
7 14 7014
8 13 8 —>f-13
9 12 9 - 12
10 11 10K 11

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit

A reference system of labels is used in the circuit diagram below. Pins with the same network label are

connected together.

Schematic diagram

R1

200 4

20Q o
19
>

s

2
220Q

220Q 7

200 g e
2200 _ A
[

220Q 2%
200 o //13_“

200 o 2,

10
2200 40 4

- A~ crioz]
7
)1l

SCL

2

6 K315
Pt
AL

ol

GPIO17

GPI027

GPI022
ol
e
23]
i
29
21
233
35
<ya

3.3V 5V

SDA1 TXDO }-8~
SCL1 RXDO |10
(GPIO4 GPI018!-12— Gpioig
GPIO17 GPI023}16—"Gpioz3
gmoz? GPI024 ;g GPI02d

P1022 GPI025 GPI102Y
IMOSI CEO0}24 g
(MISO CE1}28-
SCLK scLok28.
'SDAO GPIO12}32
(GPIO5 GPI016 |36~
(GPIO6 GP1020 |38
(GPIO13 GP1021 40
(GPIO19
(GP1026 Raspberry Pi

GPIO Extension Shield

GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Y #3V3 5Ve B
£4 #SDA1 5Ve B
GNDe £33
TXDO0»
RXDO0# £
#GPIO17 GPIO18#
#GPIO27 GND« N
#GPI022 GPI023s)
#3V3 GP1024#

Py #SCL1
P #GPIO4

L «GND

GNDe 303

MOSI

CE1e O

CEOs
SCLO» 30

MISO GPIO25e

GNDe 30
e e o
e o o 0 o

GND» B

06 GPIO12e OO
019 GPIO16# T
026 GPIO20s 3O
GPI021e N0

LA #GND

-2

.
LI
LRI

Raspberry Pi GPIO Extension Shield

L

LR ® © 0 00 0 0 0 00 0 0 00 0 0 0 00
® © 0 8 0 6 00 0 0000 000 0 0000 00 0 00
® © © 0 0 8 00 0 00 0 0 00 e e e G GG e O OGO
® © © 6 5 5 0 00 0 0000 000 0000 0 0 e 0o

® © 0 00 0 00 000000 00 0 00
® © © 0 0 9 9 0 0 0 0 00 0 0 0 e OO O O OO OO O SO
® © © 0 0 8 0 0 0 0 0 000 0O e G GGG OSSOSO

If LEDbar doesn’t work, rotate LEDbar 180° to try. The label is random.

In this circuit, the cathodes of the LEDs are connected to the GPIO, which is different from the previous circuit.
The LEDs turn ON when the GPIO output is low level in the program.

Code

This project is designed to make a flowing water lamp, which are these actions: First turn LED #1 ON, then

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com

turn it OFF. Then turn LED #2 ON, and then turn it OFF... and repeat the same to all 10 LEDs until the last LED
is turns OFF. This process is repeated to achieve the “movements” of flowing water.

C Code 3.1.1 LightWater

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 03.1.1_LightWater directory of C code.

2. Use the following command to compile “LightWater.c” and generate executable file “LightWater”.

3. Then run the generated file “LightWater".

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.
The following is the program code:

finclude <wiringPi.h>
finclude <stdio.h>

fidefine ledCounts 10
int pins[ledCounts] = {0,1,2,3,4,5,6,8,9, 10} ;

void main(void)
{
int i,

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

for (i=0;i<ledCounts;i++) { //Set pinMode for all led pins to output
pinMode (pins[i], OUTPUT) ;
}
while (1) {
for (i=0;i<ledCounts;i++) { // move led(on) from left to right
digitalWrite (pins[i], LOW) ;
delay (100) ;
digitalWrite(pins[i], HIGH) ;
1
for (i=ledCounts-1;i>-1;i—){ // move led(on) from right to left
digitalWrite (pins[i], LOW) ;
delay (100) ;
digitalWrite (pins[i], HIGH) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com www.freenove.com [l

In the program, configure the GPIO0-GPIO9 to output mode. Then, in the endless “while” loop of main
function, use two “for” loop to realize flowing water light from left to right and from right to left.

while (1) {

for(i=0;i<ledCounts;i++) { // move led(on) from left to right
digitalWrite (pins[il, LOW) ;
delay (100) ;
digitalWrite (pins[il, HIGH) ;

1

for(i=ledCounts—1;i>-1;i—){ // move led(on) from right to left
digitalWrite (pins[il, LOW) ;
delay (100) ;
digitalWrite (pins[il, HIGH) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4l support@freenove.com

Python Code 3.1.1 LightWater
First observe the project result, and then view the code.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 03.1.1_LightWater directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/03.1.1_LightWater
2. Use Python command to execute Python code “LightWater.py”.
python LightWater.py
After the program is executed, you will see that LED Bar Graph starts with the flowing water way to be turned
on from left to right, and then from right to left.
The following is the program code:
import RPi.GPIO as GPIO

import time

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24]

def setup():
GPIO0. setmode (GPI0. BOARD) # use Physical GPIO Numbering
GPIO0. setup(ledPins, GPIO.OUT) # set all ledPins to OUTPUT mode
GPIO. output (ledPins, GPIO.HIGH) # make all ledPins output HIGH level, turn off all led

def loop():
while True:

for pin in ledPins: # make led(on) move from left to right
GPIO0. output (pin, GPIO.LOW)
time. sleep(0.1)
GPIO0. output (pin, GPI0.HIGH)

for pin in ledPins[::-1]: # make led(on) move from right to left
GPIO0. output (pin, GPIO.LOW)
time. sleep(0.1)
GPI0. output (pin, GPIO.HIGH)

def destroy():

GPIO0. cleanup () # Release all GPIO
if name == main_ : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the program, first define 10 pins connected to LED, and set them to output mode in subfunction setup().
Then in the loop() function, use two “for” loops to realize flowing water light from right to left and from left
to right. ledPins[::-1] is used to get elements of ledPins in reverse order.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com www.freenove.com [l

def loop():
while True:

for pin in ledPins: ftmake led on from left to right
GPIO. output (pin, GPIO.LOW)
time. sleep (0. 1)
GPIO. output (pin, GPIO.HIGH)

for pin in ledPins[::-1]: #imake led on from right to left
GPIO. output (pin, GPIO.LOW)
time. sleep (0. 1)
GPIO. output (pin, GPIO.HIGH)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Chapter 4 Analog & PWM

In previous chapters, we learned that a Push Button Switch has two states: Pressed (ON) and Released (OFF),
and an LED has a Light ON and OFF state. Is there a middle or intermediated state? We will next learn how to
create an intermediate output state to achieve a partially bright (dim) LED.

First, let us learn how to control the brightness of an LED.

Project 4.1 Breathing LED

We describe this project as a Breathing Light. This means that an LED that is OFF will then turn ON gradually
and then gradually turn OFF like "breathing". Okay, so how do we control the brightness of an LED to create
a Breathing Light? We will use PWM to achieve this goal.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire

—a. 4

Component Knowledge

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete-
time signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A
familiar example of an Analog Signal would be how the temperature throughout the day is continuously
changing and could not suddenly change instantaneously from 0°C to 10°C. However, Digital Signals can
instantaneously change in value. This change is expressed in numbers as 1 and O (the basis of binary code).
Their differences can more easily be seen when compared when graphed as below.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

ANALOG DIGITAL

> >
7t t

Note that the Analog signals are curved waves and the Digital signals are “Square Waves”.

In practical applications, we often use binary as the digital signal, that is a series of 0’s and 1's. Since a binary
signal only has two values (0 or 1) it has great stability and reliability. Lastly, both analog and digital signals
can be converted into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits.
Digital processors cannot directly output analog signals. PWM technology makes it very convenient to achieve
this conversion (translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high
levels and low levels, which alternately last for a while. The total time for each set of high levels and low levels
is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time of high
level outputs are generally called “pulse width”, and the duty cycle is the percentage of the ratio of pulse
duration, or pulse width (PW) to the total period (T) of the waveform. The longer the output of high levels last,
the longer the duty cycle and the higher the corresponding voltage in the analog signal will be. The following
figures show how the analog signal voltages vary between 0V-5V (high level is 5V) corresponding to the pulse
width 0%-100%:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

ANALOG
AU DIGITAL
5V
0% Duty Cycle
0 > .
AU
5V
25% Duty Cycle —‘ —l 1
0 > .
Period
MU Pulse width
5V
50% Duty Cycle T H _‘ |>
0 > t
MNU
5v
75% Duty Cycle '
0 > t
AU
5V —
100% Duty Cycle
0 >

t

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this
relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

It is evident, from the above, that PWM is not actually analog but the effective value of voltage is equivalent
to the corresponding analog value. Therefore, by using PWM, we can control the output power of to an LED
and control other devices and modules to achieve multiple effects and actions.

In RPi, GPIO18 pin has the ability to output to hardware via PWM with a 10-bit accuracy. This means that 100%
of the pulse width can be divided into 2'°=1024 equal parts.

The wiringPi library of C provides both a hardware PWM and a software PWM method, while the wiringPi
library of Python does not provide a hardware PWM method. There is only a software PWM option for Python.

The hardware PWM only needs to be configured, does not require CPU resources and is more precise in time
control. The software PWM requires the CPU to work continuously by using code to output high level and

low level. This part of the code is carried out by multi-threading, and the accuracy is relatively not high enough.

In order to keep the results running consistently, we will use PWM.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m 4 support@freenove.com www.freenove.com [l

Circuit
Schematic diagram Hardware connection. If you need any support, please
| | o feel free to contact us via: support@freenove.com
33V 5V
—31sDA1 TXDO -8
—21{sCL1 RXDO {10 : g
—LIGPIO4 GPIO18}12 e 3
11GPIO17 GPI023}-16 = 5
31GPI027 GPI1024}-18 B
2 GPI022 GPI1025 22 e @
9.{MOsI CEOf24— & 2
-21IMISO CE1{28 - B
231sCLK SCLO}28~ = =
-2L1spao GPIO12}32— & ©
-291GpI05 GPIO16 36— =
-211GPI06 GPIO20(H— e &
-331GPI013 GPIO21H40. £ X =
-221GPI019 : - E
(GPI026 Raspberry Pi -
GPIO Extension Shield
GND ?m
220Q

Code

This project uses the PWM output from the GPIO18 pin to make the pulse width gradually increase from 0%
to 100% and then gradually decrease from 100% to 0% to make the LED glow brighter then dimmer.

C Code 4.1.1 BreathingLED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 04.1.1_BreathingLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/0uU.1.1_BreathingLED

2. Use following command to compile “BreathingLED.c” and generate executable file “BreathingLED".

gcc BreathingLED.c -o BreathingLED -lwiringPi

3. Then run the generated file “BreathingLED”

sudo ./BreathingLED

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually
like breathing.

The following is the program code:

1 finclude <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>
#define ledPin 1

void main(void)

{

~N O O1 B~ W DD

int 1i;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com

printf("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

softPwmCreate (ledPin, 0, 100):;//Creat SoftPWM pin

while (1) {

for(i=0;i<100;i++) { //make the led brighter
softPwmWrite (ledPin, 1i);
delay (20) ;

1

delay (300) ;

for(i=100;i>=0;i—-) { //make the led darker
softPwmWrite (ledPin, 1i);
delay (20) ;

}

delay (300) ;

"

}
First, create a software PWM pin.
! softPwmCreate (l1edPin, 0, 100);//Creat SoftPWM pin
There are two “for” loops in the next endless “while” loop. The first loop outputs a power signal to the ledPin
PWM from 0% to 100% and the second loop outputs a power signal to the ledPin PWM from 100% to 0%.
while (1) {
for (i=0;1<100; i++) {
softPwmWrite (ledPin, 1i);
delay (20) ;

1

delay (300) ;

for (i=100;i>=0;i--) {
softPwmWrite (ledPin, 1i);
delay (20) ;

1

delay (300) ;

}
You can also adjust the rate of the state change of LED by changing the parameter of the delay() function in

the “for” loop.

This creates a software controlled PWM pin.

This updates the PWM value on the given pin.
For more details, please refer http://wiringpi.com/reference/software-pwm-library/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-pwm-library/

4 support@freenove.com

www.freenove.com

Python Code 4.1.1 BreathingLED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 04.1.1_BreathingLED directory of Python code.

2. Use the Python command to execute Python code “BreathingLED.py".

After the program is executed, you will see th
similar to “breathing”.
The following is the program code:

at the LED gradually turns ON and then gradually turns OFF

import RPi.GPIO as GPIO
import time
LedPin = 12 # define the LedPin
def setup():

global p

GPI0. setmode (GPI0. BOARD)

GPI10. setup (LedPin, GPI0.O0UT)
GPI0. output (LedPin, GPIO.LOW)

#
#
#

p = GPIO. PWM(LedPin, 500)
p. start (0)

#

def loop():
while True:
for dec in range(0, 101, 1):
p. ChangeDutyCycle (dc)
time. sleep(0.01)
time. sleep (1)

for dc in range (100, -1, -1):

p. ChangeDutyCycle (dc)
time. sleep(0.01)
time. sleep (1)

def destroy():
p.stop() # stop PWM
GPTO0. cleanup() # Release all GPIO

if name == main_ :
print (Program is starting ...
setup ()
try:
Loop ()

Program entrance

")

use PHYSICAL GPIO Numbering
set LedPin to OUTPUT mode
make ledPin output LOW level to turn off LED

set PWM Frequence to 500Hz
set initial Duty Cycle to 0

make the led brighter
set dc value as the duty cycle

make the led darker
set dc value as the duty cycle

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

The LED is connected to the 10 port called GPIO18. The LedPin is defined as pin 12 and set to output mode
according to the corresponding chart for pin designations. Then create a PWM instance and set the PWM

frequency to 1000HZ and the initial duty cycle to 0%.

LedPin = 12 # define the LedPin

def setup():
global p
GPI0. setmode (GP10. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(LedPin, GPIO.OUT) # set LedPin to OUTPUT mode

GPIO. output (LedPin, GPIO.LOW) # make ledPin output LOW level to turn off LED

p = GPIO. PWM(LedPin, 500) # set PWM Frequence to 500Hz
p. start (0) # set initial Duty Cycle to 0

There are two “for” loops used to control the breathing LED in the next endless “while” loop. The first loop
outputs a power signal to the ledPin PWM from 0% to 100% and the second loop outputs a power signal to

the ledPin PWM from 100% to 0%.

def loop():
while True:

for de in range(0, 101, 1): # make the led brighter
p. ChangeDutyCycle (dc) # set dc value as the duty cycle
time. sleep(0.01)

time. sleep(1)

for de in range(100, -1, —-1): # make the led darker
p. ChangeDutyCycle (dc) # set dc value as the duty cycle
time. sleep(0.01)

time. sleep(1)

The related functions of PWM are described as follows:

To create a PWM instance:

To start PWM, where dc is the duty cycle (0.0 <= dc <= 100.0)

To change the frequency, where freq is the new frequency in Hz

To change the duty cyclewhere 0.0 <= dc <= 100.0

To stop PWM.

For more details regarding methods for using PWM with RPi.GPIO, please refer to:
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

4 support@freenove.com www.freenove.com [l

Chapter 5 RGB LED

In this chapter, we will learn how to control a RGB LED.
An RGB LED has 3 LEDs integrated into one LED component. It can respectively emit Red, Green and Blue

light. In order to do this, it requires 4 pins (this is also how you identify it). The long pin (1) is the common
which is the Anode (+) or positive lead, the other 3 are the Cathodes (-) or negative leads. A rendering of a
RGB LED and its electronic symbol are shown below. We can make RGB LED emit various colors of light and

brightness by controlling the 3 Cathodes (2, 3 & 4) of the RGB LED

™, 1
R G B
I R
2] 3 2 3 4
Red, Green, and Blue light are called 3 Primary Colors when discussing light (Note: for pigments such as paints,
the 3 Primary Colors are Red, Blue and Yellow). When you combine these three Primary Colors of light with

varied brightness, they can produce almost any color of visible light. Computer screens, single pixels of cell
phone screens, neon lamps, etc. can all produce millions of colors due to phenomenon.

RGB

If we use a three 8 bit PWM to control the RGB LED, in theory, we can create 2°x2%2°=16777216 (16 million)

colors through different combinations of RGB light brightness.
Next, we will use RGB LED to make a multicolored LED.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

Project 5.1 Multicolored LED

In this project, we will make a multicolored LED, which we can program the RGB LED to automatically change

colors.

Component List

Raspberry Pi (with 40 GPIO) x1 RGB LED x1 Resistor 220Q x3

GPIO Extension Board & Wire x1

Breadboard x1 M

Jumper Wire [
P —)

Circuit

Schematic diagram

3.3V 5V
—3.1SDA1 TXDO}=8
—21sCL1 RXDO {10
LEDL —L1GPIO4 GPIO18
oW [151Gpi022 GPI025[2
N o0 -191mosi CE0}2
: 2LImiso CE1}2
B ~234SCLK SCLO}&
~2L{SDAO GPIO12}32
~224GPIO5 GPIO1630
S11GPIos GPIO20
-331GPIO13 GPI021
35.1GPIO19
-3L1GPI026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

5Ve
5Ve
DR
ee e oo

© o 00 00
® o 00 00
® o 00 00
® o 00 00
® o 00 00

L)
e e o o o
e e oo o
e e e o o
e o0 o o

GNDe
TXDOs

Raspberry Pi GPIO Extension Shield

M ERR R R RR R R R R R R R R R RRRRRRRRRRRRRRR

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m 4 support@freenove.com www.freenove.com [l

In this kit, the RGB led is Common anode. The voltage difference between LED will make it work. There is
no visible GND. The GPIO ports can also receive current while in output mode.

If circuit above doesn’t work, the RGB LED may be common cathode. Please try following wiring.
There is no need to modify code for random color.

Raspberry Pi GPIO Extension Shield

M EERERRRERRRRRRRRRRRRRRRERRRRRERRRRERRREL |

Code

We need to use the software to make the ordinary GPIO output PWM, since this project requires 3 PWM and

in RPi only one GPIO has the hardware capability to output PWM,

C Code 5.1.1 Colorful LED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 05.1.1_ColorfulLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/05.1.1_ColorfulLED

2. Use following command to compile “ColorfulLED.c” and generate executable file “ColorfulLED”.
Note: in this project, the software PWM uses a multi-threading mechanism. So “-Ipthread” option need
to be add to the compiler.

gcc ColorfulLED.c —-o ColorfulLED -lwiringPi -1lpthread

3. And then run the generated file “ColorfulLED".

sudo ./ColorfulLED

After the program is executed, you will see that the RGB LED shows lights of different colors randomly.

The following is the program code:

1 finclude <wiringPi.h>
#include <softPwm.h>
#tinclude <stdio.h>

#include <stdlib.h>

ftdefine ledPinRed 0
ftdefine ledPinGreen 1

ftdefine ledPinBlue 2

© 0 N O O1 = W D

—
o

void setupLedPin (void)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com

{
softPwmCreate (ledPinRed, 0, 100); //Creat SoftPWM pin for red
softPwmCreate (ledPinGreen, 0, 100); //Creat SoftPWM pin for green
softPwmCreate (ledPinBlue, 0, 100); //Creat SoftPWM pin for blue
J

void setLedColor(int r, int g, int b)

{
softPwmWrite (ledPinRed, 1); //Set the duty cycle
softPwmWrite (ledPinGreen, g); //Set the duty cycle
softPwmWrite (ledPinBlue, b); //Set the duty cycle
J

int main(void)

{
int r,g,b;
printf ("Program is starting ...\n”);
wiringPiSetup(); //Initialize wiringPi.
setupLedPin() ;
while (1) {
r=random()%100; //get a random in (0, 100)
g=random()%100; //get a random in (0, 100)
b=random()%100; //get a random in (0, 100)
setLedColor (r, g, b) ;//set random as the duty cycle value
printf ("r=%d, g=%d, b=%d \n”,r,g,b);
delay (1000) ;
}
return 0;
}

First, in subfunction of ledInit(), create the software PWM control pins used to control the R, G, B pin
respectively.

void setupLedPin (void)

{
softPwmCreate (ledPinRed, 0, 100); //Creat SoftPWM pin for red
softPwmCreate (ledPinGreen, 0, 100); //Creat SoftPWM pin for green
softPwmCreate (ledPinBlue, 0, 100); //Creat SoftPWM pin for blue
}

Then create subfunction, and set the PWM of three pins.

. void setLedColor (int r, int g, int b)
{

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

softPwmWrite (ledPinRed, 1); //Set the duty cycle
softPwmWrite (ledPinGreen, g); //Set the duty cycle
softPwmWrite (ledPinBlue, b); //Set the duty cycle

}
Finally, in the “while” loop of main function, get three random numbers and specify them as the PWM duty
cycle, which will be assigned to the corresponding pins. So RGB LED can switch the color randomly all the

time.

while (1) {
r=random()%100; //get a random in (0, 100)
g=random()%100; //get a random in (0, 100)
b=random()%100; //get a random in (0, 100)
setLedColor (1, g, b) ; //set random as the duty cycle value
printf ("r=%d, g=%d, b=%d \n”,r,g,b);
delay (1000) ;

}

The related function of PWM Software can be described as follows:

This function will return a random number.

For more details about Software PWM, please refer to: http://wiringpi.com/reference/software-pwm-library/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-pwm-library/

B www.freenove.com < support@freenove.com | EENEE

Python Code 5.1.1 ColorfulLED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 05.1.1_ColorfulLED directory of Python code.

2. Use python command to execute python code “ColorfulLED.py”.

After the program is executed, you will see that the RGB LED randomly lights up different colors.
The following is the program code:
import RPi.GPIO as GPIO

import time

import random

pins = [11, 12, 13] # define the pins for R:11,G:12,B:13

def setup():

global pwmRed, pwmGreen, pwmBlue

GPIO. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering

GPIO0. setup (pins, GPIO.OUT) # set RGBLED pins to OUTPUT mode
GPIO. output (pins, GPIO.HIGH) # make RGBLED pins output HIGH level
pwmRed = GPIO. PW(pins[0], 2000) # set PWM Frequence to 2kHz

pwmGreen = GPIO.PWM (pins[1], 2000) # set PWM Frequence to 2klz
pwmBlue = GPIO.PW (pins[2], 2000) # set PWM Frequence to 2kHz
pwmRed. start (0) # set initial Duty Cycle to O

pwmGreen. start (0)

pwmBlue. start (0)

def setColor(r_val, g val,b val): # change duty cycle for three pins to r val,g val,b val
pwmRed. ChangeDutyCycle (r_val) # change pwmRed duty cycle to r val
pwmGreen. ChangeDutyCycle (g val)
pwmBlue. ChangeDutyCycle (b_val)

def loop():
while True :

r=random. randint (0, 100) #get a random in (0, 100)
g=random. randint (0, 100)
b=random. randint (0, 100)
setColor (r, g, b) #set random as a duty cycle value
print Cr=%d, g=%d, b=%d > %(r ,g, b))
time. sleep(1)

def destroy():
pwmRed. stop ()

pwmGreen. stop ()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m 4 support@freenove.com

www.freenove.com .

pwmBlue. stop ()
GPIO0. cleanup ()

.) .
if name == main

print (Program is starting ...

setup ()

try:
Loop ()

except KeyboardInterrupt:
destroy ()

Program entrance

)

Press ctrl-c to end the program.

In last chapter, we learned how to use Python language to make a pin output PWM. In this project, we output

to three pins via PWM and the method is exactly the same as we used in the last chapter. In the “while” loop

of “loop” function, we first generate three random numbers, and then specify these three random numbers

as the PWM values for the three pins, which will make the RGB LED produce multiple colors randomly.

def loop():
while True :
r=random. randint (0, 100)
g=random. randint (0, 100)
b=random. randint (0, 100)
setColor(r, g, b)

#get a random in (0, 100)

#set random as a duty cycle value

print Cr=%d, g=%d, b=%d = %(r ,g, b))

time. sleep (1)

About the randint() function :

This function can return a random integer (a whole number value) within the specified range (a, b).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

Chapter 6 Buzzer

In this chapter, we will learn about buzzers and the sounds they make. And in our next project, we will use an
active buzzer to make a doorbell and a passive buzzer to make an alarm.

Project 6.1 Doorbell

We will make a doorbell with this functionality: when the Push Button Switch is pressed the buzzer sounds
and when the button is released, the buzzer stops. This is a momentary switch function.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

NPN transistorxl Active buzzer x1 Push Button Resistor 1kQ x1 | Resistor 10kQ x2
(S8050) Switch x1

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

Component knowledge

Buzzer

A buzzer is an audio component. They are widely used in electronic devices such as calculators, electronic
alarm clocks, automobile fault indicators, etc. There are both active and passive types of buzzers. Active
buzzers have oscillator inside, these will sound as long as power is supplied. Passive buzzers require an
external oscillator signal (generally using PWM with different frequencies) to make a sound.

Active buzzer Passive buzzer

P o 1
2 |c=)
Y == =

Active buzzers are easier to use. Generally, they only make a specific sound frequency. Passive buzzers
require an external circuit to make sounds, but passive buzzers can be controlled to make sounds of various
frequencies. The resonant frequency of the passive buzzer in this Kit is 2kHz, which means the passive
buzzer is the loudest when its resonant frequency is 2kHz.

How to identify active and passive buzzer?

1. As arule, there is a label on an active buzzer covering the hole where sound is emitted, but there are
exceptions to this rule.

2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and
crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating
(and a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not
have protective coatings on their underside. From the pin holes, view of a passive buzzer, you can see
the circuit board, coils, and a permanent magnet (all or any combination of these components
depending on the model.

Active buzzer bottom Passive buzzer bottom

Transistors

A transistor is required in this project due to the buzzer’'s current being so great that GPIO of RPi's output
capability cannot meet the power requirement necessary for operation. A NPN transistor is needed here to
amplify the current.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Transistors, full name: semiconductor transistor, is a semiconductor device that controls current (think of a
transistor as an electronic “amplifying or switching device”. Transistors can be used to amplify weak signals,
or to work as a switch. Transistors have three electrodes (PINs): base (b), collector (c) and emitter (e). When
there is current passing between "be" then "ce" will have a several-fold current increase (transistor
magnification), in this configuration the transistor acts as an amplifier. When current produced by "be" exceeds
a certain value, "ce” will limit the current output. at this point the transistor is working in its saturation region
and acts like a switch. Transistors are available as two types as shown below: PNP and NPN,

PNP transistor NPN transistor
1) E 3]C
P 5 B g
B B
19283 3|C 19283 11E
E B C E B C

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Thanks to the transistor's characteristics, they are often used as switches in digital circuits. As micro-controllers
output current capacity is very weak, we will use a transistor to amplify its current in order to drive components
requiring higher current.

When we use a NPN transistor to drive a buzzer, we often use the following method. If GPIO outputs high
level, current will flow through R1 (Resistor 1), the transistor conducts current and the buzzer will make sounds.
If GPIO outputs low level, no current will flow through R1, the transistor will not conduct currentand buzzer
will remain silent (no sounds).

When we use a PNP transistor to drive a buzzer, we often use the following method. If GPIO outputs low level,
current will flow through R1. The transistor conducts current and the buzzer will make sounds. If GPIO outputs
high level, no current flows through R1, the transistor will not conduct current and buzzer will remain silent
(no sounds). Below are the circuit schematics for both a NPN and PNP transistor to power a buzzer.

NPN transistor to drive buzzer PNP transistor to drive buzzer
SV sV
(111 R1
2 ||| Buzzer 1kQ
1T Uno Pin AN [Q1
R1
1kQ
Uno Pin AW Q1 1L
2 |CJ)| Buzzer
T

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Circuit

Schematic diagram with RPi GPIO Extension Shield

1
=2
T R2
3.3V 5V ke
—31sDA1 TXDO }--8 i
» —24SCL1 RXDOHQ- 1o
—L1GPI04 GPIO181-12 AN—9
H\Nv—%—cmow GPI1023 g
GPI027 GPI024
150 51GPI022 GPI025 }-22..
194mosi CEO0 |24
21Imiso CE1}28- ™
-234SCLK scLopeé- |
271spAo GPIO12}32 |
291GPI05 GPI016 |36~
S11GpPios GP1020 |38~
-331GPI013 GP1021 140
é%emom
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

o s il o ¢ o 0o o s 00 00

GNDe

®e e o 0 0
e e e 0 0
e e 0 0 0
e o 0 0 o
e o 0 0 0
e e o 0 o
e e 0 0 o

GPI024e

Raspberry Pi GPIO Extension Shield

Note: in this circuit, the power supply for the buzzer is 5V, and pull-up resistor of the push button switch is
connected to the 3.3V power feed. Actually, the buzzer can work when connected to the 3.3V power feed
but this will produce a weak sound from the buzzer (not very loud).

Code

In this project, a buzzer will be controlled by a push button switch. When the button switch is pressed, the
buzzer sounds and when the button is released, the buzzer stops. It is analogous to our earlier project that
controlled an LED ON and OFF.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B ww.freenove.com

>4 support@freenove.com

C Code 6.1.1 Doorbell

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 06.1.1_Doorbell directory of C code.

2. Use following command to compile “Doorbell.c” and generate executable file “Doorbell.c”.

3. Then run the generated file “Doorbell”.

After the program is executed, press the push button switch and the will buzzer sound. Release the push

button switch and the buzzer will stop.
The following is the program code:

finclude <wiringPi.h>
finclude <stdio.h>

#tdefine buzzerPin 0 //define the buzzerPin

#define buttonPin 1 //define the buttonPin

void main(void)
{

printf ("Program is starting ... \n”);

wiringPiSetup() ;

pinMode (buzzerPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;

pullUpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {

if (digitalRead (buttonPin) == LOW){ //button is pressed
digitalWrite (buzzerPin, HIGH); //Turn on buzzer
printf ("buzzer turned on >>> \n”);

}

else { //button is released
digitalWrite (buzzerPin, LOW); //Turn off buzzer
printf ("buzzer turned off <<< \n”);

}

The code is exactly the same as when we used a push button switch to control an LED. You can also try using

the PNP transistor to achieve the same results.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m 4 support@freenove.com

www.freenove.com

Python Code 6.1.1 Doorbell

First, observe the project result, then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 06.1.1_Doorbell directory of Python code.

2. Use python command to execute python code “Doorbell.py”.

After the program is executed, press the push button switch and the buzzer will sound. Release the push

button switch and the buzzer will stop.

The following is the program code:

import RPi.GPIO as GPIO

buzzerPin = 11 # define buzzerPin
12 # define buttonPin

buttonPin

def setup():
GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup (buzzerPin, GPIO. OUT) # set buzzerPin to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up_ down=GPIO.PUD UP) # set buttonPin to PULL UP

INPUT mode

def loop():
while True:

if GPIO. input (buttonPin)==GPI0.LOW: # if button is pressed
GPIO0. output (buzzerPin, GPIO0. HIGH) # turn on buzzer
print (buzzer turned on >>>)

else : # if button is relessed
GPIO0. output (buzzerPin, GPTIO0. LOW) # turn off buzzer
print (buzzer turned off <<<)

def destroy():

GPI0. cleanup () # Release all GPIO
if name == main_ : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

The code is exactly the same as when we used a push button switch to control an LED. You can also try using

the PNP transistor to achieve the same results.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4l support@freenove.com

Project 6.2 Alertor

Next, we will use a passive buzzer to make an alarm.
The list of components and the circuit is similar to the doorbell project. We only need to take the Doorbell
circuit and replace the active buzzer with a passive buzzer.

Code

In this project, our buzzer alarm is controlled by the push button switch. Press the push button switch and the

buzzer will sound. Release the push button switch and the buzzer will stop.

As stated before, it is analogous to our earlier project that controlled an LED ON and OFF.

To control a passive buzzer requires PWM of certain sound frequency.

C Code 6.2.1 Alertor

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 06.2.1_Alertor directory of C code.

cd ~/Freenove_Kit/Code/C_Code/06.2.1_Alertor

2. Use following command to compile “Alertor.c” and generate executable file “Alertor”. “-Im” and “-Ipthread”
compiler options need to added here.

gcc Alertor.c -o Alertor -lwiringPi -1m -1lpthread

3. Then run the generated file “Alertor”.

sudo ./Alertor

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.
The following is the program code:

finclude <wiringPi.h>
#include <stdio.h>
#include <softTone.h>
#include <math.h>

#tdefine buzzerPin 0 //define the buzzerPin
#define buttonPin 1 //define the buttonPin

void alertor (int pin) {
int x;
double sinVal, toneVal;

for (x=0;x<360;x++) { // frequency of the alertor is consistent with the sine wave

sinVal = sin(x * (M PI / 180)); //Calculate the sine value

toneVal = 2000 + sinVal * 500; //Add the resonant frequency and weighted sine
value

softToneWrite (pin, toneVal) ; //output corresponding PWM

delay (1) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m DX support@freenove.com www.freenove.com [l

}

void stopAlertor (int pin) {
softToneWrite (pin, 0) ;

}

int main(void)

{

printf("Program is starting ... \n”);

wiringPiSetup() ;

pinMode (buzzerPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;
softToneCreate (buzzerPin); //set buzzerPin
pullUpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {
if (digitalRead (buttonPin) == LOW) { //button is pressed
alertor (buzzerPin); // turn on buzzer
printf (“alertor turned on >>> \n”);
}
else { //button is released
stopAlertor (buzzerPin); // turn off buzzer

printf(“alertor turned off <<< \n”);

}

return 0;

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a
certain frequency, so you need to create a software PWM pin though softToneCreate (buzzeRPin). Here
softTone is designed to generate square waves with variable frequency and a duty cycle fixed to 50%, which
is a better choice for controlling the buzzer.

! softToneCreate (buzzeRPin) ; l
In the while loop of the main function, when the push button switch is pressed the subfunction alertor() will
be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine curve.
We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this value

is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite (pin,
toneVal).

void alertor (int pin) {
int x;
double sinVal, toneVal:
for (x=0;x<360;x++) { //The frequency is based on the sine curve
sinVal = sin(x * (M PI / 180)):
toneVal = 2000 + sinVal * 500;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vww.freenove.com >4 support@freenove.com m

softToneWrite (pin, toneVal) ;
delay (1) ;

If you want to stop the buzzer, just set PWM frequency of the buzzer pin to 0.

void stopAlertor(int pin) {
softToneWrite (pin, 0) ;

The related functions of softTone are described as follows:

This creates a software controlled tone pin.

This updates the tone frequency value on the given pin.

For more details about softTone, please refer to :http://wiringpi.com/reference/software-tone-library/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-tone-library/

4 support@freenove.com www.freenove.com [l

Python Code 6.2.1 Alertor

First observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 06.2.1_Alertor directory of Python code.

2. Use the python command to execute the Python code “Alertor.py”.

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.
The following is the program code:

import RPi.GPIO as GPIO

import time

import math

buzzerPin = 11 # define the buzzerPin

12 # define the buttonPin

buttonPin

def setup():

global p

GPI0. setmode (GP10. BOARD) # Use PHYSICAL GPIO Numbering

GPIO. setup (buzzerPin, GPIO. OUT) # set RGBLED pins to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up_ down=GPIO.PUD UP) # Set buttonPin to INPUT
mode, and pull up to HIGH level, 3.3V

p = GPIO. PWM(buzzerPin, 1)

p. start (0) ;

def loop():
while True:
if GPTO. input (buttonPin)==GPT0. LOW:
alertor ()
print (alertor turned on >>>)
else :
stopAlertor ()
print (alertor turned off <<<)
def alertor():
p. start (50)
for x in range (0, 361) : # Make frequency of the alertor consistent with the sine wave
sinVal = math. sin(x * (math.pi / 180.0)) # calculate the sine value
toneVal = 2000 + sinVal * 500 # Add to the resonant frequency with a Weighted
p. ChangeFrequency (toneVal) # Change Frequency of PWM to toneVal
time. sleep (0. 001)

def stopAlertor():

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

p. stop ()
def destroy():
GPIO0. output (buzzerPin, GPIO.LOW) # Turn off buzzer
GPIO0. cleanup () # Release GPIO resource
if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a
certain frequency, so you need to create a software PWM pin though softToneCreate (buzzeRPin). The way
to create a PWM was introduced earlier in the BreathingLED and RGB LED projects.

def setup():
global p
GPI0. setmode (GPI0. BOARD) # Use PHYSICAL GPIO Numbering
GPIO. setup (buzzerPin, GPIO.OUT) # set RGBLED pins to OUTPUT mode
GPIO0. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # Set buttonPin to INPUT

mode, and pull up to HIGH level, 3.3V
p = GPIO. PWM (buzzerPin, 1)
p. start (0) ;

In the while loop loop of the main function, when the push button switch is pressed the subfunction alertor()
will be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine
curve. We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this
value is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite
(pin, toneVal).

def alertor():
p. start (50)
for x in range (0, 361) :
sinVal = math. sin(x * (math.pi / 180.0))
toneVal = 2000 + sinVal * 500
p. ChangeFrequency (toneVal)
time. sleep (0. 001)

When the push button switch is released, the buzzer (in this case our Alarm) will stop.

def stopAlertor():
p. stop ()

support@freenove.com [l

101

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

(Important) Chapter 7 ADC

We have learned how to control the brightness of an LED through PWM and that PWM is not a real analog
signal. In this chapter, we will learn how to read analog values via an ADC Module and convert these analog

values into digital.

Project 7.1 Read the Voltage of Potentiometer

In this project, we will use the ADC function of an ADC Module to read the voltage value of a potentiometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x16

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

Rotary potentiometer x1 | ADC module x1 Resistor 10kQ x2

(/A0 ADC \yCC

> E=1 793?0

o mEE
A2

PCF8591

FREENOVE

O r A7 Freenove GND

This product contains only one ADC modaule, there are two types, PCF8591 and ADS7830. For the projects
described in this tutorial, they function the same. Please build corresponding circuits according to the ADC

module found in your Kit.
ADC module: PCF8591 ADC module: ADS7830

Model diagram Actual Picture Model diagram Actual Picture

, ADC
A0 agsran Y
A1

PCF8591

COM

= = .
=
- = =

A7 Freenove GND

FREENOVE

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Circuit knowledge

ADC

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or
binary form consisting of 1s and 0s. The range of our ADC module is 8 bits, that means the resolution is
27\8=256, so that its range (at 3.3V) will be divided equally to 256 parts.

Any analog value can be mapped to one digital value using the resolution of the converter. So the more bits

the ADC has, the denser the partition of analog will be and the greater the precision of the resulting conversion.

DIGITAL

255
254
253
252

o= N WA

oV 3.3V 7 ANALOG
Subsection 1: the analog in range of 0V-3.3/256 V corresponds to digital 0;
Subsection 2: the analog in range of 3.3 /256 V-2*3.3 /256V corresponds to digital 1;

The resultant analog signal will be divided accordingly.

DAC

The reversing this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output high
level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful.
The DAC module PCF8591 has a DAC output pin with 8-bit accuracy, which can divide VDD (here is 3.3V) into
2°=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when
the digital quantity is 128, the output voltage value is 3.3/256 *128=1.65V, the higher the accuracy of DAC,
the higher the accuracy of output voltage value will be.

support@freenove.com [l

103

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

Potentiometer

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus far
in our project which have a fixed resistance value, the resistance value of a potentiometer can be adjusted. A
potentiometer is often made up by a resistive substance (a wire or carbon element) and movable contact
brush. When the brush moves along the resistor element, there will be a change in the resistance of the
potentiometer’s output side (3) (or change in the voltage of the circuit that is a part). The illustration below
represents a linear sliding potentiometer and its electronic symbol on the right.

>
< 1

1 32 2

Between potentiometer pin 1 and pin 2 is the resistive element (a resistance wire or carbon) and pin 3 is
connected to the brush that makes contact with the resistive element. In our illustration, when the brush
moves from pin 1 to pin 2, the resistance value between pin 1 and pin 3 will increase linearly (until it reaches
the highest value of the resistive element) and at the same time the resistance between pin 2 and pin 3 will
decrease linearly and conversely down to zero. At the midpoint of the slider the measured resistance values
between pin 1 and 3 and between pin 2 and 3 will be the same.

In a circuit, both sides of resistive element are often connected to the positive and negative electrodes of
power. When you slide the brush “pin 3", you can get variable voltage within the range of the power supply.

. R1
Pin 3 10kQ

Rotary potentiometer
Rotary potentiometers and linear potentiometers have the same function; the only difference being the
physical action being a rotational rather than a sliding movement.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

support@freenove.com

PCF8591

The PCF8591 is a single-chip, single-supply low power 8-bit CMOS data acquisition device with four analog
inputs, one analog output and a serial 12C-bus interface. The following table is the pin definition diagram of

PCF8591.
SYMBOL | PIN | DESCRIPTION TOP VIEW
AINO 1
AN 2 Analog inputs (A/D ter)

nalog inputs converter
2:E§ j ANO [1] U 16] Voo
AO 5 AIN1 E E AQUT
Al 6 Hardware address AIN2 E E VREF
A2 7
Vss 8 Negative supply voltage AIN3 E E AGND
SDA 9 I2C-bus data i / PCF8591 '

-bus data input/output AD E El EXT

SCL 10 | 12C-bus clock input ‘
0OsC 11 | Oscillator input/output Al E 1__‘] 0sc
EXT 12 | external/internal switch for oscillator input A2 E _1—2] SCL
AGND 13 | Analog ground ‘
Vref 14 | Voltage reference input Vss E EI SDA
AOUT 15 | Analog output(D/A converter)
Vdd 16 | Positive supply voltage

For more details about PCF8591, please refer to the datasheet which can be found on the Internet.

ADS7830

The ADS7830 is a single-supply, low-power, 8-bit data acquisition device that features a serial 12C interface
and an 8-channel multiplexer. The following table is the pin definition diagram of ADS7830.

SYMBOL

PIN

DESCRIPTION

TOP VIEW

CHO

CH1

CH2

Analog input channels

CH3

(A/D converter)

CH4

CH5

DO PR WIN]|F-

support@freenove.com [l

105

mailto:support@freenove.com
http://www.freenove.com/

106 support@freenove.com www.freenove.com [l

CH6
CH7 8 S
GND 9 Ground cHo | | [16] *Voo

. Internal +2.5V Reference,
REF in/out | 10 CH2 | 3 14 | scL
External Reference Input

CH3 | 4 13| A1
COM 11 Common to Analog Input Channel
CH4 | 5 12| A0
AO 12
1 Hardware address CH5 | 6 11| COM
Al 3 - CH6 | 7 10 | REFy/ REFqyt
SCL 14 Serial Clock . EI GND
SDA 15 Serial Sata
+VDD 16 Power Supply, 3.3V Nominal

I12C communication

[2C (Inter-Integrated Circuit) has a two-wire serial communication mode, which can be used to connect a
micro-controller and its peripheral equipment. Devices using 12C communications must be connected to the
serial data line (SDA), and serial clock line (SCL) (called 12C bus). Each device has a unique address which can
be used as a transmitter or receiver to communicate with devices connected via the bus.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

X support@freenove.com

Circuit with PCF8591

Schematic diagram

}

w

AO

FLEELE]

Vss

AIN2
AIN3

AINO VDDi—O—o
AIN Aout

PCF8591
1

Vrefi

Agnd

EXT

0SC

1
Freenove
SCL

e

R3
10kQ

—

SDA

3.3V

R2 3.3V 5V

993 1spA1 TXDO

S 1scL1 RXDO

—LIGPIO4 GPIO18
ALIGPIO17 GPI023
A31GpPI027 GP1024
15.1GPI1022 GPIO25
19 1MmoslI CEOQ
211MIso CE1
231SCLK SCLO
2L1SDA0 GPIO12
291GPI05 GPIO16
S311GPIO6 GPI020
331GPIO13 GPI021
-32.1GPIO19
=y

(GPIO26 Raspberry Pi
GPIO Extension Shield
GND

PEBRPPEREPIER

Hardware connection

Raspberry Pi GPIO Extension Shield

Please keep the chip mark consistent to make the chips under right direction and position.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

www.freenove.com [l

4 support@freenove.com

108

Circuit with ADS7830

Schematic diagram

-
-
kP
16
18
22,
br
126
128
32
[36
38
E v

V

5

\

3.3V

3.3

TXDO
RXDO
GPIO18
GPIO23
GPI1024
GPIO25

PRI
0000000 &
“aonaon o
OOO0O g

Q.

)]

O

4

B QX¥ZO00000
OL0paanan
SSHhn000060

GPIO Extension Shield

GND

VCC
SDA
SCL|

ADC

COMp—=

REFp—=

Freenove

A0
=y A1
ey A2

wy A5
=y AB

= A7 GND l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

® o 0 0 0 0 0 0 0 0
® ® 0 0 0 0 0 0 00

PI21YS uoisuajx3 OIdo !d Auaqdsey

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

The 12C interface in Raspberry Pi is disabled by default. You will need to open it manually and enable the 12C
interface as follows:

Type command in the Terminal:

sudo raspi-config

Then open the following dialog box:

— 1 Raspberry Pi Software Configuration Tool (raspi-config) b——

1 Change User Password Change password for the current u
2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional sett
5 Interfacing Options Configure connections to peripher
6 Overclock Configure overclocking for your P
7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve
9 About raspi-config Information about this configurat

<Select> <Finish>

Choose “5 Interfacing Options” then “P5 12C” then “Yes” and then “Finish” in this order and restart your RPi.
The 12C module will then be started.

Type a command to check whether the 12C module is started:

lsmod | grep i2c

If the 12C module has been started, the following content will be shown. “bcm2708" refers to the CPU model.
Different models of Raspberry Pi display different contents depending on the CPU installed:

12c_bc =
12¢_de 8589 0
pi@raspberrypi:

pi@ras grep 12c

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Next, type the command to install I2C-Tools. It is available with the Raspberry Pi OS by default.
sudo apt-get install i2c-tools

I2C device address detection:

i2cdetect -y 1

When you are using the PCF8591 Module, the result should look like this:

pi@raspberrypi:
o 1 2 3

Here, 48 (HEX) is the 12C address of ADC Module (PCF8591).

When you are using ADS, the result should look like this:
pl@raspberrypl: '

e 1 2 3
[E:

16:

Here, 4b (HEX) is the 12C address of ADC Module (ADS7830).

sudo apt-get install python-smbus
sudo apt-get install python3-smbus

For C code for the ADC Device, a custom library needs to be installed.
1. Use cd command to enter folder of the ADC Device library.

cd ~/Freenove_Kit/Libs/C-Libs/ADCDevice

2. Execute command below to install the library.

sh ./build.sh

A successful installation, without error prompts, is shown below:

pl@raspberrypi:

oulld completed

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Next, we will execute the code for this project.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 07.1.1_ADC directory of C code.

cd ~/Freenove_Kit/Code/C_Code/07.1.1_ADC

2. Use following command to compile “ADC.cpp” and generate the executable file “ADC".
g++ ADC.cpp —-o ADC -lwiringPi -1ADCDevice

3. Then run the generated file “ADC".

sudo ./ADC

After the program is executed, adjusting the potentiometer will produce a readout display of the
potentiometer voltage values in the Terminal and the converted digital content.

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

The following is the code:

1 #tinclude <wiringPi.h>

2 ftinclude <wiringPiI2C. h>

3 #include <stdio.h>

4 #tinclude <ADCDevice. hpp>

5

6 ADCDevice *adc; // Define an ADC Device class object

7

8 int main(void) {

9 adc = new ADCDevice();

10 printf()

11

12 if(adc—>detectI2C()){ // Detect the pcf8591.

13 delete adc;

14 adc = new PCF8591() ; // If detected, create an instance of PCF8591.
15 }

16 else if(adc—>detectI2C()){// Detect the ads7830

17 delete adc;

18 adc = new ADS7830() ; // 1If detected, create an instance of ADS7830

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

}

else{
printf("No correct 12C address found, \n”
“"Please use command i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);
return —-1;

}

while (1) {
int adcValue = adc—>analogRead(0); //read analog value of AOQ pin
float voltage = (float)adcValue / 255.0 % 3.3: // Calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, adcValue, voltage) ;
delay (100);

}

In this code, a custom class library "ADCDevice" is used. It contains the method of utilizing the ADC Module
in this project, through which the ADC Module can easily and quickly be used. In the code, you need to first
create a class pointer adc, and then point to an instantiated object. (Note: An instantiated object is given a
name and created in memory or on disk using the structure described within a class declaration.)

ADCDevice *adc; // Define an ADC Device class object

adc = new ADCDevice();
Then use the member function detectIC(addr) in the class to detect the 12C module in the circuit. Different
modules have different 12C addresses. Therefore, according to the different addresses, we can determine what
the ADC module is in the circuit. When the correct module is detected, the pointer adc will point to the address
of the object, and then the previously pointed content will be deleted to free memory. The default address of
ADC module PCF8591 is 0x48, and that of ADC module ADS7830 is Ox4b.

if (ade—>detectI2C(0x18)) { // Detect the pcf8591.

delete adc;
adc = new PCF8591() : // 1If detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc;
adc = new ADS78300() ; // 1f detected, create an instance of ADS7830
}
else{
printf ("No correct 12C address found, \n”
"Please use command ’i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);
return —1;
}

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [Nk

When you have a class object pointed to a specific device, you can get the ADC value of the specific channel
by calling the member function analogRead (chn) in this class
- int adcValue = adc—>analogRead(0); //read analog value of A0 pin

Then according to the formula, the voltage value is calculated and displayed on the Terminal.

float voltage = (float)adcValue / 255.0 % 3.3: // Calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, adcValue, voltage) ;

Reference

This is a base class. All ADC module classes are its derived classes. It has a real function and a virtual

function.

int detectI2C(int addr);
This is a real function, which is used to detect whether the device with given [2C address exists. If it exists,
return 1, otherwise return O.

virtual int analogRead(int chn);
This is a virtual function that reads the ADC value of the specified channel. It is implemented in a derived
class.

These two classes are derived from the ADCDevice class and mainly implement the function
analogRead(chn).

int analogRead (int chn) ;
This returns the value read on the supplied analog input pin.
Parameter chn: For PCF8591, the range of chnis 0, 1, 2, 3. For ADS7830, the range of is 0, 1, 2, 3,4, 5, 6, 7.

You can find the source file of this library in the folder below:
~/Freenove_Kit/Libs/C-Libs/ADCDevice/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

For Python code, ADCDevice requires a custom module which needs to be installed.
1. Use cd command to enter folder of ADCDevice.

cd ~/Freenove_Kit/Libs/Python-Libs/

2. Unzip the file.

tar zxvf ADCDevice-1.0.3.tar.gz

3. Open the unzipped folder.

cd ADCDevice-1.0.3

4. Install library for python2 and python3.

sudo python2 setup.py install

sudo python3 setup.py install

A successful installation, without error prompts, is shown below:

Execute the following command. Observe the project result and then learn about the code in detail.
If you have any concerns, please contact us via:

1. Use cd command to enter 07.1.1_ADC directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/07.1.1_ADC

2. Use the Python command to execute the Python code “ADC.py".

python ADC.py

After the program is executed, adjusting the potentiometer will produce a readout display of the
potentiometer voltage values in the Terminal and the converted digital content.

i e e B e B e e B S B
o Py P P i e e e

The following is the code:

1 import time

2 from ADCDevice import *

3

4 adc = ADCDevice() # Define an ADCDevice class object
5

6 def setup():

7 global adc

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com N

if(adc. detectI2C(0x48)) : # Detect the pcf8591.
adc = PCF8591 ()
elif(adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()
else:
print ("No correct 12C address found, \n”
“"Please use command i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);

exit(=1)

def loop():
while True:
value = adc. analogRead(0) # read the ADC value of channel 0
voltage = value / 255.0 % 3.3 # calculate the voltage value
print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep(0. 1)

def destroy():
ade. close ()

if name == main ': # Program entrance
print (Program is starting ...)
try:
setup ()
Loop ()

except KeyboardInterrupt: # Press ctrl-c¢ to end the program.

destroy()

In this code, a custom Python module "ADCDevice" is used. It contains the method of utilizing the ADC
Module in this project, through which the ADC Module can easily and quickly be used. In the code, you need
to first create an ADCDevice object adc.

[ade = ADCDevice(# Define an ADCDevice class object

Then in setup(), use detecticlC(addr), the member function of ADCDevice, to detect the 12C module in the
circuit. Different modules have different 12C addresses. Therefore, according to the address, we can determine

which ADC Module is in the circuit. When the correct module is detected, a device specific class object is
created and assigned to adc. The default address of PCF8591 is 0x48, and that of ADS7830 is Ox4b.
def setup():
global adc
if (adc. detectI2C(0x48)): # Detect the pcf8591.
ade = PCF8591 ()
elif (adc. detectI2C(0x4b)): # Detect the ads7830
ade = ADS78300)

else:

print ("No correct [2C address found, \n”

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

"Please use command ’i2cdetect -y 1 to check the 12C address! \n”
“Program Exit. \n”);
exit(=1)

When you have a class object of a specific device, you can get the ADC value of the specified channel by
calling the member function of this class, analogRead(chn). In loop(), get the ADC value of potentiometer.

value = adc. analogRead(0) # read the ADC value of channel 0

Then according to the formula, the voltage value is calculated and displayed on the terminal monitor.

voltage = value / 255.0 % 3.3 # calculate the voltage value
print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep(0. 1)

Reference
About smbus Module:

The System Management Bus Module defines an object type that allows SMBus transactions on hosts
running the Linux kernel. The host kernel must support I2C, 12C device interface support, and a bus adapter
driver. All of these can be either built-in to the kernel, or loaded from modules.

In Python, you can use help(smbus) to view the relevant functions and their descriptions.
bus=smbus.SMBus(1): Create an SMBus class object.

bus.read_byte_data(address,cmmd+chn): Read a byte of data from an address and return it.
bus.write_byte_data(address,cmd,value): Write a byte of data to an address.

This is a base class.

int detectI2C(int addr);

This is a member function, which is used to detect whether the device with the given |2C address exists. If
it exists, it returns true. Otherwise, it returns false.

These two classes are derived from the ADCDevice and the main function is analogRead(chn).

int analogRead (int chn) ;
This returns the value read on the supplied analog input pin.
Parameter chn: For PCF8591, the range of chnis 0, 1, 2, 3. For ADS7830, the range is 0, 1, 2, 3,4, 5, 6, 7.

You can find the source file of this library in the folder below:
~/Freenove_Kit/Libs/Python-Libs/ADCDevice-1.0.2/src/ADCDevice/ADCdevice.py

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [k

Chapter 8 Potentiometer & LED

Earlier we learned how to use ADC and PWM. In this chapter, we learn to control the brightness of an LED by
using a potentiometer.

Project 8.1 Soft Light

In this project, we will make a soft light. We will use an ADC Module to read ADC values of a potentiometer
and map it to duty cycle ratio of the PWM used to control the brightness of an LED. Then you can change the
brightness of an LED by adjusting the potentiometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x17

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

Rotary Potentiometer x1 | ADC Module x1 10kQ x2 | 220Q x1 | LED x1

L_IAD
AT
A2
A3 D1

PCF8591

A4 DO

A5 COM
 EEEN
A7 Freenove GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit with PCF8591

Schematic diagram

R3
10kQ

._/_\ A A /N =
w
B
‘ AINO VDD
PCF8591
==y AIN1 Aout
w1 AIN2 Vref
=1 AIN3 Agnd|
A0 EXT
1 OSC|
Freenove
A2
Vss SDA
!

§ ém
10kQ 3
5
i
11
B o 1
-l
el
w13
T2
) sl
LEDL _3L
o 2 3
220Q ..QL

3.3V

SDA1
SCL1
GPIO4
GPIO17
GPIO027
GPIO22
MOSI
MISO
SCLK
SDAO
GPIO5
GPIO6
GPIO13
GPIO19

5V

TXDO
RXDO
GPIO18
GPIO23
GP1024
GPIO25
CEO
CE1
SCLO
GPIO12
GPIO16
GPI1020
GP1021

GPIO26 Raspberry Pi
GPIO Extension Shield

GND

PEERERRRRRREF

Hardware connection

Raspberry Pi GPIO Extension Shield

P~~~

LI N O 165840d O KR

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EMEE]

Circuit with ADS7830
Schematic diagram

5 3.3V 5V
3 {spa1 TXDO |8~
A0 VCC
o —m ™ sm_’//—iscu RXDO (0
SR | S s —LAGPI04 GPIO18}-12—
= L 1GPIO17 GPI023 |16
: R Do 2-GPI027 GPI024 |18
. com GPI022 GPI025 |22
| R 19 Imosi CE0 24
— a7 " enp -AJ—»M|SO CE1 26
-+ 231scLk SCLOL8~
= -21L1SDAO GPIO12}32-
291GPI05 GPI016}-36~
S11GPIos GPI1020}38
-331GpPI013 GP1021}40.
. ﬁ%omom
- (GP1026 Raspberry Pi
GPIO Extension Shield
GND

GPIO21e 0T

Y eMISO GPIO25# BO
o O

Raspberry Pi GPIO Extension Shield

Code

C Code 8.1.1 Softlight

If you did not configure 12C, please refer to Chapter 7. If you did, please move on.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

4 support@freenove.com www.freenove.com [l

1. Use cd command to enter 08.1.1_Softlight directory of C code.

2. Use following command to compile “Softlight.cpp” and generate executable file “Softlight”.

3. Then run the generated file “Softlight”.

After the program is executed, adjusting the potentiometer will display the voltage values of the

potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness
of LED will be changed.

The following is the code:

#tinclude <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>
#tinclude <ADCDevice. hpp>

#tdefine ledPin 0
ADCDevice *adc; // Define an ADC Device class object
int main(void) {

adc = new ADCDevice();

printf("Program is starting ... \n”);

if (adc—>detectI2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory
adc = new PCF8591() ; // If detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS78300() ; // If detected, create an instance of ADS7830
}
else{
printf("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1 to check the I12C address! \n”
“Program Exit. \n”);
return -1;
}
wiringPiSetup() ;
softPwmCreate (1edPin, 0, 100) ;
while (1) {
int adcValue = adc—>analogRead (0); //read analog value of AO pin
softPwmWrite (1edPin, adcValuek100/255) ; // Mapping to PWM duty cycle

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

float voltage = (float)adcValue / 255.0 % 3.3: // Calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, adcValue, voltage) ;
delay (30) ;

}

return 0;

In the code, read the ADC value of potentiometer and map it to the duty cycle of PWM to control LED
brightness.

. int adcValue = adc—>analogRead (0) ; //read analog value of A0 pin

softPwmWrite (1edPin, adcValue*100/255) ; // Mapping to PWM duty cycle

support@freenove.com [l

121

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Python Code 8.1.1 Softlight
If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 08.1.1_Softlight directory of Python code

cd ~/Freenove_Kit/Code/Python_Code/08.1.1_Softlight

2. Use the python command to execute the Python code “Softlight.py”.
python Softlight.py

After the program is executed, adjusting the potentiometer will display the voltage values of the
potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness
of LED will be changed.

The following is the code:
import RPi.GPIO as GPIO

import time

from ADCDevice import *

ledPin = 11
adc = ADCDevice() # Define an ADCDevice class object

def setup():

global adc

if (adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()

elif(adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()

else:
print ("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1 to check the I12C address! \n”
“Program Exit. \n”);
exit(-1)

global p

GPI0. setmode (GPT0. BOARD)

GPI0. setup (1edPin, GPIO. OUT)

p = GPI0. PWM(ledPin, 1000)

p. start (0)
def loop():
while True:
value = adc. analogRead (0) # read the ADC value of channel 0
p. ChangeDutyCycle (value*x100/255) # Mapping to PWM duty cycle

voltage = value / 255.0 % 3.3 # calculate the voltage value

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com [JE¥E]

print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 03)

def destroy():

adc. close()

if name == main ': # Program entrance
print (Program is starting ...)
try:
setup ()
Toop()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

In the code, read ADC value of potentiometers and map it to the duty cycle of the PWM to control LED
brightness.

value = adc. analogRead (0) # read the ADC value of channel 0
p. ChangeDutyCycle (value*100/255) # Mapping to PWM duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Chapter 9 Potentiometer & RGBLED

In this chapter, we will use 3 potentiometers to control the brightness of 3 LEDs of RGBLED to create multiple
colors.

Project 9.1 Colorful Light

In this project, 3 potentiometers are used to control the RGB LED and in principle it is the same as with the
Soft Light. project. Namely, read the voltage value of the potentiometer and then convert it to PWM used to
control LED brightness. Difference is that the previous soft light project needed only one LED while this one
required (3) RGB LEDs.

Component List

Raspberry Pi x1 Jumper Wires M/M x17
GPIO Extension Board & Ribbon Cable x1
—-- - -
Breadboard x1
Rotary potentiometer x1 | ADC module x1 10kQ x2 | 220Q x3 | RGB
5 LED x3
A0
PCF8591 UAT
A2 ™
A3 D1 N
A4 DO
A5 COM
FREENOVE A
A7 Freenove GND

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [V

Circuit with PCF8591

Schematic diagram

3.3V
24 1 IAINO vdd |18 -
’“l 2 AAINT - Aoutf—12-)
3 {AIN2 Vreff—14 _
..‘l\/\/\/\,l_lh —4 JAIN3 AGND |12 % 0
5 |ao EXTEL’—“' 33V 5V
6 fa1 oscl1l i ¢—3 ISDAT TXDO -8~
“’l 7l seo | 51scL1 RXDO |10
8 tvss sDAl-2 LIGPIO4 GPI018 |12~
~fl\/\/\/\,:—||| PCFB50T 111GPI017 GPI023 |16
13 1GPI1027 GPI024 |18~
|1 151GPI022 GPIO25 {22
“‘l 19 Imosi CE0 |24
21dmiso CE1}-26~
1\/\/\/\,;_“. 231scLK SCLOJ-28~
ar R o -2L1SDAO GPIO12 {32~
N T om— 291GPI05 GPI1016 |35~
x S -311GPI06 GPI1020 }-38—
B —ww- 331GPI013 GPIO21 40
. P R -321GPIO19
LEDI =——AWW~ -31GPI026 Raspberry Pi
GPIO Extension Shield
GND

® ® 0o 0 00 00 0 00 00

GNDe £
TXDO0e £
RXDO0e E3C

Y Y O I I

o o el o o

CIC) #GPI04
© e o o o
e o o o o

Raspberry Pi GPIO Extension Shield

== —— K 111 T

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

www.freenove.com [l

3.3V

< support@freenove.com

126

Circuit with ADS7830

Schematic diagram

(2]

3.3V

£
o
Q
W L L .. Rp—— Rp——
0 L L R PP > & &
c 3= 3% 1
e .o e ll|'0
(©] .
o oo il + o
Y océ‘.o s s s s s (Y
. L B ..
80268LA&&L&&& @ LY s o000 ““- gl
W _ o
R RIS = W. s seeee .. ik et i e %
200000600000 £3 o 4 M BEetil S EERETE RN
FrXoaooo Nannoo W% > o || cn— — - 2 by prereamrs
3 (OIGIVIV] [LIOIDRD 2 n o fl e s s ” * e
[o3e] © . + 1 sesnse
%mm w 2 ® RIOIP D0 . . Y “H
> Rh.wG __ w0 . >SS0 *>® . DY ..
@ x . e o000 ..
™ N~NNON ;M W S5 O
~ NN 0O~~~ — C——TSET) o ® 266066
0005O¥00000 o O . PITIS
aoaolooooonon & 8 ¢
QOOZSZnn0OO000 < ® bvie e @ . .e
(@] . ® o000 LR _—
350& o e 00 00 .. —
W o = . .
— . . —
[} . et) ..
m g > .) .
Y . ..
_ g L L
- o .o .o £ e e
aw L oo = o .
(o] (@] [e] m.w > e *» W .. - -
cR eS| =8 e = . s
EBl ESlED © (o))
TR 8 3 Sl E e 3
=R . oLl o) .. W "
m m m +V||H. ””. b . -
< a & o 0Z01d9 9Z0IdD* * o —= . ..
c oz een a B #910149 6101d9* .o) . o
R R R R ER Y o o *AND €LOIdO* & L *7L0IdD 90149* v
Iid 1Ll RN S i *7101d9 901d9* . > MM eaND cOldD® .o
%] L *AND SOIdO® e + L #0705 ovas®
> L #0105 Q L *13) ano#* -
c » » LTER) - . 7] . .
© LR #03) .. 3] .)
) (Y #5701d9 OSIW® .o m. . .o
a (O] . . o
= i = ()] . - >
—_— —_— c . = .
u . m .
L L Q 4 = ¢
>
2z : e .
R . c .
c n
w i w S . g '
=
v b4] T
Q o plaIys uoisualx3 Oldo Id Auaqdsey
< plaIyg uoisuaix3 Oldo !d Auaqdsey S
O 0 EEEREREREEEERR EERERREREEY,
O EEEEEREEEERR EEEEEEEERERERERE, b
) [°}
. =
S x
2 3
© =
S o
T =

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of C code.

cd ~/Freenove_Kit/Code/C_Code/09.1.1_ColorfulSoftlight

2. Use following command to compile "ColorfulSoftlight.cpp” and generate executable file
"ColorfulSoftlight”.

g++ ColorfulSoftlight.cpp -o ColorfulSoftlight -lwiringPi -1ADCDevice

3. Then run the generated file "ColorfulSoftlight"”.

sudo ./ColorfulSoftlight

After the program is executed, rotate one of the potentiometers, then the color of RGB LED will change. The
Terminal window will display the ADC value of each potentiometer.

The following is the program code:

1 ftinclude <wiringPi.h>

2 #include <stdio.h>

3 #include <softPwm.h>

4 #tinclude <ADCDevice. hpp>

5

6 ttdefine ledRedPin 3 //define 3 pins for RGBLED
7 #define ledGreenPin 2

8 #define ledBluePin 0

9

10 ADCDevice #*adc; // Define an ADC Device class object
11

12 int main(void) {

13 adc = new ADCDevice();

14 printf("Program is starting ... \n”);

15

16 if(adc—>detectI2C(DR // Detect the pcf8591
17 delete adc; // Free previously pointed memory

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
}
else if (adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS7830() ; // 1f detected, create an instance of ADS7830
}
else{
printf("No correct 12C address found, \n”
“"Please use command i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);
return —-1;
}
wiringPiSetup () ;
softPwmCreate (ledRedPin, 0, 100) ; //creat 3 PMW output pins for RGBLED

softPwmCreate (1edGreenPin, 0, 100) ;
softPwmCreate (1edBluePin, 0, 100) ;
while (1) {
int val Red = adc—>analogRead(0); //read analog value of 3 potentiometers
int val Green = adc—>analogRead(l);
int val Blue = adc—>analogRead(2);
softPwmWrite (ledRedPin, val Red*100/255) ; //map the read value of
potentiometers into PWM value and output it
softPwmWrite (ledGreenPin, val Greenk100/255) ;
softPwmWrite (ledBluePin, val Bluex100/255) ;
//print out the read ADC value
printf ("ADC value val Red: %d ,\tval Green: %d ,\tval Blue: %d
\n”, val Red, val Green, val Blue);
delay (100);
}

return 0;

In the code you can read the ADC values of the 3 potentiometers and map it into a PWM duty cycle to control
the 3 LED elements to vary the color of their respective RGB LED.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com DM} support@freenove.com [E¥A)

Python Code 9.1.1 ColorfulSoftlight
If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/09.1.1_ColorfulSoftlight
2. Use python command to execute python code "ColorfulSoftlight.py"”.
python ColorfulSoftlight.py

After the program is executed, rotate one of the potentiometers, then the color of RGB LED will change. The
Terminal window will display the ADC value of each potentiometer.
The following is the program code:

import RPi.GPIO as GPIO

import time

from ADCDevice import *

ledRedPin = 15 # define 3 pins for RGBLED
ledGreenPin = 13

ledBluePin = 11

adc = ADCDevice() # Define an ADCDevice class object

def setup():

global adc

if (adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()

elif(adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()

else:
print ("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1 to check the I12C address! \n”
“Program Exit. \n”);
exit(-1)

global p Red, p Green, p Blue

GPI0. setmode (GPT0. BOARD)

GPT0. setup (1edRedPin, GPTO. OUT) # set RGBLED pins to OUTPUT mode
GPT0. setup (1edGreenPin, GPI0. OUT)

GPI0. setup(ledBluePin, GPI0. OUT)

p_Red = GPIO. PWM(ledRedPin, 1000) # configure PMW for RGBLED pins, set PWM
Frequence to 1kHz

p_Red. start (0)

p_Green = GPIO. PWM(ledGreenPin, 1000)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

p_Green. start(0)
p _Blue = GPIO. PWM(ledBluePin, 1000)
p_Blue. start (0)

def loop():
while True:
value Red = adc. analogRead (0) # read ADC value of 3 potentiometers
value Green = adc. analogRead (1)
value Blue = adc. analogRead (2)
p_Red. ChangeDutyCycle (value Red%100/255) # map the read value of potentiometers
into PWM value and output it
p_Green. ChangeDutyCycle (value Green*100/255)
p_Blue. ChangeDutyCycle (value Blue%100/255)
print read ADC value
print (ADC Value
value Red: %d , \tvlue Green: %d , \tvalue Blue: %d %(value Red, value Green, value Blue))

time. sleep(0.01)

def destroy():
ade. close ()
GPI10. cleanup()

if name == main ’: # Program entrance
print (Program is starting ...)
setup()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c¢ to end the program.
destroy()

In the code you can read the ADC values of the 3 potentiometers and map it into a PWM duty cycle to control
the 3 LED elements to vary the color of their respective RGB LED.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EeHl

Chapter 10 Photoresistor & LED

In this chapter, we will learn how to use a photoresistor to make an automatic dimming nightlight.

Project 10.1 NightLamp

A Photoresistor is very sensitive to the amount of light present. We can take advantage of the characteristic
to make a nightlight with the following function. When the ambient light is less (darker environment), the LED
will automatically become brighter to compensate and when the ambient light is greater (brighter
environment) the LED will automatically dim to compensate.

Component List

Raspberry Pi x1 Jumper Wires M/M x15
GPIO Extension Board & Ribbon Cable x1

—-
Breadboard x1

Photoresistor x1 ADC module x1 10kQ x3 220Q x1 LED x1

ADC
=570
AT ! Msoa
A2 SCL

A3 D1

PCF8591

A4 DO

A5 COM
 EEENE
A7 Freenove GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

Photoresistor

A Photoresistor is simply a light sensitive resistor. It is an active component that decreases resistance with
respect to receiving luminosity (light) on the component's light sensitive surface. A Photoresistor's resistance
value will change in proportion to the ambient light detected. With this characteristic, we can use a
Photoresistor to detect light intensity. The Photoresistor and its electronic symbol are as follows.

1T 2

The circuit below is used to detect the change of a Photoresistor’s resistance value:

10kQ R1
Pin
Pin

R1 R2

In the above circuit, when a Photoresistor’s resistance vale changes due to a change in light intensity, the
voltage between the Photoresistor and Resistor R1 will also change. Therefore, the intensity of the light can
be obtained by measuring this voltage.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

X support@freenove.com

Circuit with PCF8591

The circuit used is similar to the Soft light project. The only difference is that the input signal of the AINO pin
of ADC changes from a Potentiometer to a combination of a Photoresistor and a Resistor.

Schematic diagram

Raspberry Pi GPIO Extension Shield

Mo
R4
Tgm 10kQ 5 3.3V 5V

A S I I S1eety RXDO L

— a2 vref | —11L‘GPIO4 GPIO18 g

1 AIN3 Agnd | GPIO17 GPI023
0 mj—l 13 1Gpi027 GPI024 |18
N ‘sl - 12.1GPI022 GPI1025 |22
° Freencv®: ce 9.1 MOSI CEO 124
P b 504 21IMISO CE1}26.
i 231scLk ScLo}28-
5 2L1sDA0 GPIO12}32
- um | ~294GPIO5 GPIO16 {36
- -311GPIO6 GPI020 }-38
-331GPI013 GPI021 40
-321GPI1019
- GPI1026 Raspberry Pi
’ GPIO Extension Shield
. GND
2200 -
Hardware connection

GPIO24e RO

L) #GPI022 GPIO23e ERC

LR O 16G840d O KR

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit with ADS7830

The circuit used is similar to the Soft light project. The only difference is that the input signal of the AINO pin
of ADC changes from a Potentiometer to a combination of a Photoresistor and a Resistor.

Schematic diagram

3.3V T I
3.3V 5V
R4 AO veep—
10kQ - 3 IsDA1 TXDO }—8—
s - S 1SCL1 RXDO O
—iz Bil—s —L1GPIO4 GPIO18 12~
N e 1 icpPio17 GPI1023 |16
1 o A31GPI027 GPI024 |18
1 e Ly 2] CPIO22 GPI025 |22
T iy " 5 19 IMOsI CEO0 |24
RS 21IMISO CE1}<8~
- -231SCLK SCLO |28~
2200 21 1SDAO GPIO12}32-
291GpPI05 GPIO16|36
311GPIO6 GPI020 |38
331GPIO13 GPI1021 140
.. i B %Gplow
- - GPI026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

= e e 0006 ooeeoe R e 00 o eeee eeeee oeeeee oo
= B ® o6 e e e ee eeeee eeeee o0
= 2

- o

- (2]

- & o e oo . EEE R e oo 00 e
= oo oo . e e e e e e e o0 0 0
- [® e 208 o eeo e e e e e 00
- q:,; 88 S249 g ONONOND e e 00 0 0
[~ x =3 SoS (C “"’gk e o0 000
-y S O i

— o) :

— < n

- % Ono o o Xy 2 8 e o 0o 0 0 0
g S ER S . «
- KX (CIT] Mm== ()

- e H ® EEEE e oo 00
- ? oo P . oo & - . oo 00000
E g SN ' . . _— O
- o

—_ 7]

—]

- 14

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com K

Code

The code used in this project is identical with what was used in the last chapter.

C Code 10.1.1 Nightlamp

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 10.1.1_Nightlamp directory of C code.

cd ~/Freenove_Kit/Code/C_Code/10.1.1_Nightlamp

2. Use following command to compile “Nightlamp.cpp” and generate executable file “Nightlamp”.
g++ Nightlamp.cpp —-o Nightlamp -lwiringPi -1ADCDevice

3. Then run the generated file “Nightlamp”.

sudo ./Nightlamp

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness
of the LED changes accordingly. As in previous projects the Terminal window will display the current input
voltage value of ADC module AO pin and the converted digital quantity.

The following is the program code:

#tinclude <wiringPi.h>
#include <stdio.h>
#include <softPwm. h>
#tinclude <ADCDevice. hpp>

#tdefine ledPin 0
ADCDevice *adc; // Define an ADC Device class object
int main(void) {

adc = new ADCDevice();

printf ("Program is starting ... \n”);

if (adc—>detectI2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory

adc = new PCF8591() ; // If detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS78300() ; // 1f detected, create an instance of ADS7830
}
else{

printf("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1’ to check the I12C address! \n”

“Program Exit. \n”);

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

www.freenove.com

return —-1;

}

wiringPiSetup () ;

softPwmCreate (1edPin, 0, 100) ;

while (1) {
int value = adc—>analogRead(0) ;
softPwmWrite (1edPin, value¥100/255) ;
float voltage = (float)value / 255.0 % 3.3:
printf ("ADC value : %d , \tVoltage
delay (100);

}

return 0;

//read analog value of A0 pin

// calculate voltage

© % 2fV\n”, value, voltage) :

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com EIY

Python Code 10.1.1 Nightlamp

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 10.1_Nightlamp directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/10.1.1_Nightlamp

2. Use the python command to execute the Python code “Nightlamp.py”.
python Nightlamp.py

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness
of the LED changes accordingly. As in previous projects the Terminal window will display the current input
voltage value of ADC module AO pin and the converted digital quantity.
The following is the program code:

import RPi.GPIO as GPIO

import time

from ADCDevice import *

ledPin = 11 # define ledPin
adc = ADCDevice() # Define an ADCDevice class object

def setup():
global adc
if(adc. detectI12C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()
elif(adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()
else:
print ("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1 to check the I12C address! \n”
“Program Exit. \n”);
exit(-1)
global p
GPI0. setmode (GPT0. BOARD)
GPI0. setup (1edPin, GPIO. OUT) # set ledPin to OUTPUT mode
GPI10. output (1edPin, GPTO. LOW)

p = GPIO. PW (ledPin, 1000) # set PWM Frequence to 1kHz
p. start (0)

def loop():
while True:
value = adc. analogRead (0) # read the ADC value of channel 0
p. ChangeDutyCycle (value*x100/255)
voltage = value / 255.0 % 3.3

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

www.freenove.com

print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep(0.01)

def destroy():
adc. close ()
GPIO. cleanup()

if name == main ': # Program entrance
print (Program is starting ...)
setup ()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy()

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com K

Chapter 11 Thermistor

In this chapter, we will learn about Thermistors which are another kind of Resistor.

Project 11.1 Thermometer

A Thermistor is a type of Resistor whose resistance value is dependent on temperature and changes in
temperature. Therefore, we can take advantage of this characteristic to make a Thermometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x14

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

Thermistor x1 ADC module x1 Resistor 10kQ x3

. ADC
JAQ _ADS7830 \ole

PCF8591 e EEE
A2 SCL

A3 D1
A4 DO
AS COM
A6 8 REF
A7 Fr-sm.:vo CND

FREENOVE

Component knowledge

Thermistor

Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the
Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect
temperature intensity. A Thermistor and its electronic symbol are shown below.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

The relationship between resistance value and temperature of a thermistor is:
Rt=R+EXP [B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of g;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.
For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.
The circuit connection method of the Thermistor is similar to photoresistor, as the following:

5V

10kQ

Pin AO

R1

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then
we can use the formula to obtain the temperature value.
Therefore, the temperature formula can be derived as:

T2 = 1/(1/T1 + In(Rt/R)/B)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

141

B www.freenove.com DX support@freenove.com

Circuit with PCF8591

The circuit of this project is similar to the one in the last chapter. The only difference is that the Photoresistor
is replaced by the Thermistor.

Schematic diagram

B3 SL B BL
; R3 =
" g é o 3.3V 5V
~=1 AINO VDD, i
LW § 3 1SDA1 TXDO }—3—
a2 Vref 2.1scL1 RXDO O
RS Ay L1GPI04 GPIO18}12~
o oL JtlGrio17 GPio23H6-
t. osci— -134GPI027 GPI024 18
TSNS -121GPI022 GP1025|22—
S—tyas soA 19 ImosI CE0}24_
21Imiso CE1}26_
231scLK SCLO 28~
- - -2L1SDAO GPIO12}32—
= 291GPI0O5 GPIO16|36
S311GPIos GPI020}-38
-331GPI013 GPI021}40_
%‘GPIOW
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

= - o o o o 0 0 0
= ©

- £

- 1]

- c e L] ® e 0 0 00 0 0
- o LI ° ® o 0o 0 0 0 0 0
- 0 ® e . e e 0000 00
- c acN

- [= = o] ® o 0 0 0 0 0 0
- - o

- x O = o ® o o 0 0 0 0 0
- B S o

o

- E™ o 3

- IT) gg = ® o 0o 0 0 0 0 0
- — o o [o} e o 0o 0 0 0 0 0
- o (LR]

- ®e ° e o 0 0 0 0 0 0
- ? o e ° ® o 0 0 0 0 0 0
E g LR . e o 00 0 0 0 0
- o

- 0

-]

- 14 ° e o 0 00
= e e o e o 0 0

Thermistor has longer pins than the one shown in circuit.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Circuit with ADS

The circuit of this project is similar to the one in last chapter. The only difference is that the Photoresistor is
replaced by the Thermistor.

Schematic diagram

33__
330 _
_I 3.3V 5V
R4 A0 vce
10kQ i P08 g 3 ISDA1 TXDO }—8—
o b sl S 1sCL1 RXDO O
et pil— —LdGPIO4 GPIO18}-12-
g P il . el GPIO17 GPI023 }-16
- sl = GPIO27 GPI024 |18
—re el -121GPI1022 GPI025 }-22
s ™ 19 IMmOsI CEO}2d-
21IMISO CE1}e8-
231scLK SCLO }28-
271SDA0 GPIO12}32
291GPI05 GPI016 |36
L 3LIGPIO6 GPI020 }-38-
= 331GPIO13 GPI021}40_
L %Gplow
- (GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

— - oo o 0 oo o @ o oo 0 0 0
= 2

- <

- ()

- o e e e 0 0@ ° o o0 9 00 I e e 000 0 00
- o e o e 0 e ° oo 00000 e oo o0 00 00 e o000 0 00
-] 00000 OOS PV FVEXFTEKR® ¢ ¢ ¢ 000000 e o0 000 00
B 5 88?3‘:&’3 Y Syl isbe o o o ® o000 0 00
- B3 <XX0Z00Z0 OZo0Z000 $82%88%8¢%

= X RFe=mVa=0 = VWO SO S == ° o ® o0 000 00
- w a oo o a aooao - i

I~ o (L) oY O O VLU g '%5

-y = NS o Mmoo H -

- o S oA NWOWe—v—AN o o -

- [T (e F=Y=X=X=] o S00000An (IR Z 5 O %% § © o 00 0 0 0 0
- —_ — =) wy <Lt bt bt et bt o O SRS

- — aZaooaI0= ooaoaacao= FENEASES S EXQ R
- o VOVVUVUM== VwLOLOLOVLVOLVLLY

— X E R R X K ‘ERERRRERYe ¢ 06060 0 = o e oo 0000 0 0
- ? R . EEEEERE oo @ e e ° e e o000 00
E g vreeegee oo o0 e 8 = @ . e e 006000 0
- Q.

- (2]

- ©

— o oo e o e oo o o @
- o o o e oo o 0

Thermistor has longer pins than the one shown in circuit.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In this project code, the ADC value still needs to be read, but the difference here is that a specific formula is
used to calculate the temperature value.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 11.1.1_Thermometer directory of C code.

cd ~/Freenove_Kit/Code/C_Code/11.1.1_Thermometer

2 Use following command to compile “Thermometer.cpp” and generate executable file “Thermometer”.
g++ Thermometer.cpp -o Thermometer -lwiringPi -1ADCDevice

3 Then run the generated file “Thermometer”.

sudo ./Thermometer

After the program is executed, the Terminal window will display the current ADC value, voltage value and
temperature value. Try to “pinch” the thermistor (without touching the leads) with your index finger and thumb
for a brief time, you should see that the temperature value increases.

=

Temg
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

The following is the code:

1 #tinclude <wiringPi.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include <ADCDevice. hpp>

5

6 ADCDevice #*adc; // Define an ADC Device class object
7

8 int main(void) {

9 adc = new ADCDevice();

10 printf("Program is starting ... \n”);

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com www.freenove.com [l

if(adc—>detectI2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory
adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
}
else if (adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS7830() ; // 1f detected, create an instance of ADS7830
}
else{
printf("No correct 12C address found, \n”
“"Please use command i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);
return —1;
}
printf ("Program is starting ... \n”);
while (1) {
int adcValue = adc—>analogRead(0); //read analog value AOQ pin
float voltage = (float)adcValue / 255.0 % 3.3: // calculate voltage
float Rt = 10 % voltage / (3.3 — voltage): //calculate resistance value of
thermistor
float tempK = 1/(1/(273.15 + 25) + log(Rt/10)/3950.0); //calculate temperature
(Kelvin)
float tempC = tempK —273. 15; //calculate temperature (Celsius)

printf ("ADC value : %d , \tVoltage : %. 2fV,
\tTemperature : % 2fC\n”, adcValue, voltage, tempC) ;
delay (100);
}

return 0;

In the code, the ADC value of ADC module AO port is read, and then calculates the voltage and the resistance
of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor,
according to the formula.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 11.1.1_Thermometer directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/11.1.1_Thermometer

2. Use python command to execute Python code “Thermometer.py”.
python Thermometer.py

After the program is executed, the Terminal window will display the current ADC value, voltage value and
temperature value. Try to “pinch” the thermistor (without touching the leads) with your index finger and thumb

1
1
1
1
1
1
1
1
1
1
1
1
1
1.

The following is the code:

1 import RPi.GPIO as GPIO

2 import time

3 import math

4 from ADCDevice import *

5

6 adc = ADCDevice() # Define an ADCDevice class object
7

8 def setup():

9 global adc

10 if (adc. detectI2C(0x48)): # Detect the pcf8591.
11 adc = PCF8591()

12 elif (adc. detectI2C(0x4b)): # Detect the ads7830
13 ade = ADS7830()

14 else:

15 print ("No correct 12C address found, \n”

16 "Please use command ’i2cdetect —y 1’ to check the 12C address! \n”
17 “Program Exit. \n”):

18 exit (1)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

def loop():
while True:
value = adc. analogRead (0) # read ADC value AO pin
voltage = value / 255.0 * 3.3 # calculate voltage
Rt = 10 * voltage / (3.3 - voltage) # calculate resistance value of thermistor
tempK = 1/(1/(273.15 + 25) + math. log(Rt/10)/3950.0) # calculate temperature
(Kelvin)
tempC = tempK —-273. 15 # calculate temperature (Celsius)

print (ADC Value : %d, Voltage : %. 2f
Temperature : % 2f %(value, voltage, tempC))
time. sleep(0.01)

def destroy():
ade. close ()
GPI10. cleanup()

if name == main ’: # Program entrance
print (Program is starting ...)
setup()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

In the code, the ADC value of ADC module AO port is read, and then calculates the voltage and the resistance
of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor,
according to the formula.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com M4 support@freenove.com [N

Chapter 12 Joystick

In an earlier chapter, we learned how to use Rotary Potentiometer. We will now learn about joysticks, which
are electronic modules that work on the same principle as the Rotary Potentiometer.

Project 12.1 Joystick

In this project, we will read the output data of a joystick and display it to the Terminal screen.

Component List

Raspberry Pi x1 Jumper x18

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

Joystick x1 ADC module x1 Resistor

- 10kQ x3
L_AD _AQ%%O VCC
AT

A2

PCF8591

FREENOVE
A7 Freenove GND

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

Joystick

A Joystick is a kind of input sensor used with your fingers. You should be familiar with this concept already as
they are widely used in gamepads and remote controls. It can receive input on two axes (Y and or X) at the
same time (usually used to control direction on a two dimensional plane). And it also has a third direction
capability by pressing down (Z axis/direction).

GND
+5V
VRX
VRY
SW

Joystick

o o oo o}

This is accomplished by incorporating two rotary potentiometers inside the Joystick Module at 90 degrees of
each other, placed in such a manner as to detect shifts in direction in two directions simultaneously and with
a Push Button Switch in the “vertical” axis, which can detect when a User presses on the Joystick.

+5V , [swH>—
L

«(GND

When the Joystick data is read, there are some differences between the axes: data of X and Y axes is analog,
which needs to use the ADC. The data of the Z axis is digital, so you can directly use the GPIO to read this
data or you have the option to use the ADC to read this.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

X support@freenove.com

Circuit with PCF8591

Schematic diagram

R3
3.3V 10kQ
R4
10kQ
Joystick 3.3V
SW 5 GPIO18
VDD
VRY 4 AINOPCF8591
VRX |3 — 1 Aouty—
VCC 5 @ w——t AIN2 Vref]
GND T =7 AIN3 Agndy

A0

EXT|

1 0sC
Freenove
SCL

Vss

SDAy

3.3V

R2 |
10kQ 3.3V 5V

3 1sDA1 TXDO }—8—

2. 1SCL1 RXDO }-10.
—L1GPI04 GP1018}12« Gpioig
~11GPI017 GP1023 |16
-13.1GPI1027 GP1024 |18
~A21GPI022 GPI025 }-22
19 IMOS| CEO}24
~211IMIso CE1}26
-23.1sCLK SCLO}28-
2L1SDAO GPIO12}32
291GPIO5 GPIO16 }-35—
211GPIO6 GP1020}38_
23 1GPIO13 GPI021 }40.
-321GPIO19
37 GP1026 Raspberry Pi

GPIO Extension Shield

GND

A A A A A A "R

Raspberry Pi GPIO Extension Shield

166840d O K3

e o o e}

® 0 0 9 9 00 0 0 0 0 0 0 0 0 00
® ® 9 0 0 0 % " " 0 PSS S O OO
® 0 0 0 9 0 0 0 0 e eSS O O
® © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e
® © 0 9 0 00 ° 0 00 0 0 0 0 00
* e 0 ® o 0 0 0 ® e 0 0

LR A ® e 0 0 0 ® o o 0 0 .

support@freenove.com [l

149

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit with ADS7830

Schematic diagram

3.3V 3.3V
R2
10kQ |
Joystick 3.3V 5V
SW GPIOT8 [SDA1 TXDO }—-8—
VRY 45 A0 o VeC j/_a_ ISCL1 RXDO 10
VRX | ————— sDA —L1GPI04 GPIO18
vec——1 —{x scL ~111GpI017 GPI023 |16
GND [o~ 1GPIO27 GPI024 18
—t s pol— 121Gp1022 GPI1025 |22
— A5 CoMf—= JirMOSl CEO b7 -
—ne _ rer— 21IMIso CE1}e8-
a7 P Gl 231scLK scLok28.
2L1spao GPIO12}32—
291GpI05 GPIO16 |36
S11GPios GPI020 |38
- -331GP1013 GP1021}40
= —33%GPIO19
(GPI026 Raspberry Pi
GPIO Extension Shield
GND

Pttt

Raspberry Pi GPIO Extension Shield

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In this project’'s code, we will read the ADC values of X and Y axes of the Joystick, and read digital quality of
the Z axis, then display these out in Terminal.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 12.1.1_Joystick directory of C code.

cd ~/Freenove_Kit/Code/C_Code/12.1.1_Jdoystick

2. Use following command to compile "Joystick.cpp” and generate executable file "Joystick".
g++ Joystick.cpp —-o Joystick —-lwiringPi -1ADCDevice

3. Then run the generated file "Joystick".

sudo ./Joystick

After the program is executed, the terminal window will display the data of 3 axes X, Y and Z. Shifting (moving)
the Joystick or pressing it down will make the data change.

1
1
1
1
1
1
1
1

The flowing is the code:

1 #tinclude <wiringPi.h>

2 #include <stdio.h>

3 #include <softPwm.h>

4 #tinclude <ADCDevice. hpp>

5

6 ttdefine Z Pin 1 //define pin for axis Z
7

8 ADCDevice #*adc; // Define an ADC Device class object
9

10 int main(void) {

11 adc = new ADCDevice();

12 printf("Program is starting ... \n”);
13

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

if(adc—>detectI2C(0x48)) { // Detect the pcf8591.
delete adc; // Free previously pointed memory
adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
}
else if (adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS7830() ; // 1f detected, create an instance of ADS7830
}
else{
printf("No correct 12C address found, \n”
“"Please use command i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);
return —1;
}
wiringPiSetup () ;
pinMode (Z Pin, INPUT) ; //set Z Pin as input pin and pull-up mode
pullUpDnControl (Z Pin, PUD UP);
while (1) {
int val Z = digitalRead(Z Pin); //read digital value of axis Z
int val Y = adc—>analogRead (0) ; //read analog value of axis X and Y
int val X = adc—>analogRead(l);
printf("val X: %d ,\tval Y: %d ,\tval Z: %d \n”,val X,val Y, val Z);
delay (100);
}
return 0;
}

In the code, configure Z_Pin to pull-up input mode. In the while loop of the main function, use analogRead
() to read the value of axes X and Y and use digitalRead () to read the value of axis Z, then display them.
while (1) {
int val Z = digitalRead(Z Pin); //read digital value of axis Z

int val Y = adc—>analogRead (0) ; //read analog value of axis X and Y
int val X = adc—>analogRead (1) ;

printf ("val X: %d \tval Y: %d ,\tval Z: %d \n”,val X,val Y,val Z);
delay (100);

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 12.1.1_Joystick directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/12.1.1_Joystick

2. Use Python command to execute Python code "Joystick.py".

python Joystick.py

After the program is executed, the Terminal window will display the data of 3 axes X, Y and Z. Shifting (moving)
the joystick or pressing it down will make the data change.

-
= e

1
1
1
1
1
1
1
1

The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3 from ADCDevice import *

4

5 Z Pin = 12 # define Z Pin

6 adc = ADCDevice() # Define an ADCDevice class object

7

8 def setup():

9 global adc

10 if (adc. detectI2C(0x48)): # Detect the pcf8591.

11 adc = PCF8591()

12 elif (adc. detectI2C(0x4b)): # Detect the ads7830

13 adc = ADS7830()

14 else:

15 print ("No correct 12C address found, \n”

16 "Please use command ~i2cdetect -y 1’ to check the I12C address! \n”
17 "Program Exit. \n”);

18 exit (1)

19 GPI0. setmode (GPI0. BOARD)

20 GPIO. setup(Z Pin, GPIO. IN, GPIO0. PUD UP) # set Z Pin to pull-up mode
21 def loop():

22 while True:

23 val Z = GPIO. input(Z Pin) # read digital value of axis Z
24 val Y = adc. analogRead (0) # read analog value of axis X and Y
25 val X = adc. analogRead (1)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

print (" value X: %d ,\tvlue Y: %d ,\tvalue Z: %d %(val X,val Y,val 7))
time. sleep(0.01)

def destroy():
adc. close()
GPIO. cleanup()

if name == main
print (Program is starting ... ') # Program entrance
setup ()
try:
Loop()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

In the code, configure Z_Pin to pull-up input mode. In while loop, use analogRead () to read the value of
axes X and Y and use GPIO.input () to read the value of axis Z, then display them.

while True:
val Z = GPIO. input(Z Pin) #iread digital quality of axis Z
val Y = analogRead(0) #iread analog quality of axis X and Y
val X = analogRead (1)

print (value X: %d , \tvlue Y: %d ,\tvalue Z: %d %(val X, val Y, val 7))
time. sleep(0.01)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

. www.freenove.com

D4 support@freenove.com JEH

Chapter 13 Motor & Driver

In this chapter, we will learn about DC Motors and DC Motor Drivers and how to control the speed and

direction of a DC Motor.

Project 13.1 Control a DC Motor with a Potentiometer

In this project, a potentiometer will be used to control a DC Motor. When the Potentiometer is at the midpoint
position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of this midpoint,
the DC Motor speed increases until it reached the endpoint where the DC Motor achieves its maximum speed.
When the Potentiometer is turned “Left” of the midpoint the DC Motor will ROTATE in one direction and when
turned “Right” the DC Motor will ROTATE in the opposite direction.

Component List

Raspberry Pi (with 40 GPIO) x1

Breadboard x1

GPIO Extension Board & Ribbon Cable x1

Jumper Wires x23
—- - -

Breadboard Power Module x1

5V OFF 3.3V

+ -

9V Battery (you provide) & 9V Battery Cable

Rotary DC Motor x1
Potentiometer x1 1

10kQ x2

ADC Module x1

PCF8591

= i = e

REF

= . =

=

A7 Freenove GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Component knowledge

Breadboard Power Module

Breadboard Power Module is an independent circuit board, which can provide independent 5V or 3.3V power
to the breadboard when building circuits. It also has built-in power protection to avoid damaging your RPi
module. The schematic diagram below identifies the important features of this Power Module:

Power LED

Power Switch

[Power Jack USB Output Port]

[Output voltage selection Output voltage selection]

- .
L) OFF 3.3V 5V OFF 3.2
. ENE EEE OOO00
[Output port for power + - £ Output port for power]

Here is an acceptable connection between Breadboard Power Module and Breadboard using a 9V battery
and the provided power harness:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com MY

DC Motor

DC Motor is a device that converts electrical energy into mechanical energy. DC Motors consist of two major
parts, a Stator and the Rotor. The stationary part of a DC Motor is the Stator and the part that Rotates is the
Rotor. The Stator is usually part of the outer case of motor (if it is simply a pair of permanent magnets), and
it has terminals to connect to the power if it is made up of electromagnet coils. Most Hobby DC Motors only
use Permanent Magnets for the Stator Field. The Rotor is usually the shaft of motor with 3 or more
electromagnets connected to a commutator where the brushes (via the terminals 1 & 2 below) supply
electrical power, which can drive other mechanical devices. The diagram below shows a small DC Motor with

two terminal pins.

1
2
i
1 2

When a DC Motor is connected to a power supply, it will rotate in one direction. If you reverse the polarity of
the power supply, the DC Motor will rotate in opposite direction. This is important to note.

)N)\
—— —
+ - -+

L293D
L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC

Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered
later in this Tutorial).

1 L Enable 1 +V 16
2 21101 ina P2
3 31 out 1 out4 4
4 Al ov ov P2
5 21 ov ov P2
6 Ll out2 out3 L
7 WARTS In3 O
8 =1 +Vmotor Enable 2 EN
293D

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

158

support@freenove.com www.freenove.com [l

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2,7,10,15 Channel x digital signal input pin

Out x 3,6,11,14 Channel x output pin, input high or low level according to In x pin, gets
connected to +Vmotor or OV

Enablel 1 Channel 1 and Channel 2 enable pin, high level enable

Enable2 9 Channel 3 and Channel 4 enable pin, high level enable

oV 4,5,12,13 Power Cathode (GND)

+V 16 Positive Electrode (VCC) of power supply, supply voltage 4.5~36V

+Vmotor 8 Positive Electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more details, please see the datasheet for this IC Chip.

When using the L293D to drive a DC Motor, there are usually two connection options.

The following connection option uses one channel of the L239D, which can control motor speed through
the PWM, However the motor then can only rotate in one direction.

L293D Pin Out »—

Motor CM)

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the other
channel connects to GND. Therefore, you can control the speed of the motor. When these two channel signals
are exchanged, not only controls the speed of motor, but also can control the direction of the motor.

L293D Pin Out1 L293D Pin Out1

GND

GND |L293D Pin Out 2

[L293D Pin Out 2

In practical use the motor is usually connected to channel 1 and by outputting different levels to in1 and in2
to control the rotational direction of the motor, and output to the PWM wave to Enablel port to control the
motor’s rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to in3
and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control the
motor’s rotational speed.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

159

B www.freenove.com DX support@freenove.com

Circuit with PCF8591

Use caution when connecting this circuit because the DC Motor is a high-power component. Do not use the
power provided by the RPi to power the motor directly, as this may cause permanent damage to your
RPi! The logic circuit can be powered by the RPi’'s power or an external power supply, which should share a
common ground with RPi.

Schematic diagram
3.3V
TIAINO vdd}-18
—24AINT poutft- | - | |
2 JAIN2 vrefl—14 10kQ 10kQ
—~4 AAIN3 AGND |13 33V 5V
> A0 EXTE—o—||| 3 ISDA1 TXDO}-8—
6 Ia1 oscl-1- S 1scL1 RXDO 10—
7 1a2 scLf-10 LIGPI04 GPIO18 12—
8 lyss spal-2 1 1GPI017 GPI023 16
t PCreol 13 1GPI1027 GPI024 18
—— ,, 15 1GP1022 GPI025 }-22—
- 2 19 Imosi CEOQ 24—
L233D 21IMmiso CE1}26_
~g| Enable 2 +Vmotor [g -2122 gghﬁ GPSISI{g -2-8—32
T ut out 2|2 1 291GPIO5 GPIO16(36
1| ov ov [-311GPIO6 GPI020/38
-5 ov ov 24| -331GPIO13 GPI021{40-
o 1l outa out1fs 2 | | -324GPIO19
T 75| In4 In115 3L GPI026 Raspberry Pi
16V Enable 17 GPIO Extension Shield
1 GND
5V 3.3V
L —— l
3 . i ——
, 1 —
SV% —-33v
GND T T GND
_ BreadBoardPower

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

ce e
se e

s e e e
se e e

GPIO6 GPIO12e
GPIO13 GNDe

«el
se e

AL

se e

~

Change the Jumper
Position to Change the
Motor’s Supply Voltage
(3.3V or 5V)

CCO0 mmm mEEg 00CO
A e HO AS z AEEHOAS

S
E .

F/M Jumper Wire x2

The Power Switch

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EMEH

Circuit with ADS7830

Use caution when connecting this circuit because the DC Motor is a high-power component. Do not use the
power provided by the RPi to power the motor directly, as this may cause permanent damage to your
RPi! The logic circuit can be powered by the RPi’s power or an external power supply, which should share a
common ground with RPi.

Schematic diagram
3.3 l |
| 3.3V 5V
M g 3 1SDA1 TXDO }=8—
o sc 2 1SCL1 RXDO {19
o N —L1GPIO4 GPIO18 |12~
o L = 111GPIO17 GPI023 |16
—rs com— 13.GPI027 GPI024 -18—
1 6 ReFf— = | 151GP1022 GPI025 }-22—
A FreenoveGND_,j_ LA JE_‘MOS| CEO_ZA’_
LB 21ImIso CE1}26-
~5| Enable 2 +Vmotor [g -23-22 ggk}é GPSI(C);I‘]-g-ZL
= In3 In 2 ‘ (32
1% out3 out 2 |- i 291GPI05 GPIO16 36—
-l ov 0V ey -311GPIO6 GPIO20}-38
-5 ov ov 5] -231GPIO13 GPI021 40
=l outa out1}3 2 ~224GPIO19
5 75| In4 In175 -311GPI026 Raspberry Pi
16 *V Enable 175 GPIO Extension Shield
1 GND
5V 3. 3V
L |
3 a N ———
: =
5V e 33V
GND T T GND
= BreadBoardPower

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

www.freenove.com .

E R R R R RE R R e RerE T

Raspberry Pi GPIO Extension Shield

e
.

.
see e
seeee

“ew cvew
[|

_AH
TTE
P

F/M Jumper Wire x2

Selec

w
T TN 1
= 2 ACEHOAS

S
E .

O =

The Power Switch
when using.

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Change the Jumper

Position to Change the
Motor’s Supply Voltage
(3.3V or 5V)

/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In code for this project, first read the ADC value and then control the rotation direction and speed of the DC
Motor according to the value of the ADC.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 13.1.1_Motor directory of the C code.

cd ~/Freenove_Kit/Code/C_Code/13.1.1_Motor

2. Use the following command to compile “Motor.cpp” and generate the executable file “Motor”.

g++ Motor.cpp -o Motor -lwiringPi -1ADCDevice

3. Then run the generated file "Motor”.

sudo ./Motor

After the program is executed, you can use the Potentiometer to control the DC Motor. When the
Potentiometer is at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in
either direction of this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC
Motor achieves its maximum speed. When the Potentiometer is turned “Left” of the midpoint the DC Motor
will ROTATE in one direction and when turned “Right” the DC Motor will ROTATE in the opposite direction.
You will also see the ADC value of the potentiometer displayed in the Terminal with the motor direction and
the PWM duty cycle used to control the DC Motor’s speed.

turn Fo
he PWM o
ADC value
turn Fo
he FWM

PWM dut

The following is the code:

1 #include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>
#include <math. h>
#include <stdlib.h>
#include <ADCDevice. hpp>

~N O O1 B W DN

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

#tdefine motorPinl 2 //define the pin connected to L293D
#tdefine motorPin2 0
#tdefine enablePin 3

ADCDevice *adc; // Define an ADC Device class object

//Map function: map the value from a range to another range.
long map(long value, long fromLow, long fromHigh, long toLow, long toHigh) {
return (toHigh—toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow;
}
//motor function: determine the direction and speed of the motor according to the ADC
void motor(int ADC) {
int value = ADC —-128;
if (value>0) {
digitalWrite (motorPinl, HIGH) ;
digitalWrite (motorPin2, LOW) ;
printf (“turn Forward...\n");
}
else if (value<0){
digitalWrite (motorPinl, LOW) ;
digitalWrite (motorPin2, HIGH) ;
printf (“turn Back...\n”);

}

else {
digitalWrite (motorPinl, LOW) ;
digitalWrite (motorPin2, LOW) ;
printf ("Motor Stop...\n”);

}

softPwmWrite (enablePin, map (abs (value), 0, 128, 0, 100)) ;

printf("The PWM duty cycle is %d%%\n”, abs (value)*100/127);//print the PMW duty cycle
}
int main(void) {

adc = new ADCDevice();

printf("Program is starting ... \n”);

if (adc—>detectI2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory
adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS78300() ; // 1f detected, create an instance of ADS7830
}
else{

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

printf("No correct 12C address found, \n”
“"Please use command i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);
return —-1;

}

wiringPiSetup () ;

pinMode (enablePin, OUTPUT) ; //set mode for the pin

pinMode (motorPinl, OUTPUT) ;

pinMode (motorPin2, OUTPUT) ;

softPwmCreate (enablePin, 0, 100);//define PMW pin

while (1) {
int value = adc—>analogRead(0); //read analog value of A0 pin
printf ("ADC value : %d \n”, value);

motor (value) ; //make the motor rotate with speed(analog value of AO pin)
delay (100);

}

return 0;

Now that we have familiarity with reading ADC values, let’s learn the subfunction void motor (int ADC): first,
compare the ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,
motoRPin1 outputs high level and motoRPin2 outputs low level to control the DC Motor to run in the “Forward”
Rotational Direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2
outputs high level to control the DC Motor to run in the “Reverse” Rotational Direction. When the ADC value
is equal to 128, motoRPinl and motoRPin2 output low level, the motor STOPS. Then determine the PWM
duty cycle according to the difference (delta) between ADC value and 128. Because the absolute delta value
stays within 0-128, we need to use the map() subfunction mapping the delta value to a range of 0-255. Finally,
we see a display of the duty cycle in Terminal.
void motor (int ADC) {
int value = ADC -128;
if(value>0) {
digitalWrite (motoRPinl, HIGH) ;
digitalWrite (motoRPin2, LOW) ;

printf ("turn Forward...\n”);

}

else if (value<0) {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, HIGH) ;
printf ("turn Backward...\n”):

1

else {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, LOW) ;
printf ("Motor Stop...\n”);

support@freenove.com [l

165

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

}

softPwmWrite (enablePin, map (abs (value), 0, 128, 0, 100)) ;

printf ("The PWM duty cycle is %d%%\n”, abs (value)*100/127);// print out PWM duty
cycle.

}

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, please Continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1.

Use cd command to enter 13.1.1_Motor directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/13.1.1_Motor

2. Use python command to execute the Python code “Motor.py”.

python Motor.py

After the program is executed, you can use the Potentiometer to control the DC Motor. When the
Potentiometer is at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in
either direction of this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC
Motor achieves its maximum speed. When the Potentiometer is turned “Left” of the midpoint the DC Motor
will ROTATE in one direction and when turned “Right” the DC Motor will ROTATE in the opposite direction.
You will also see the ADC value of the potentiometer displayed in the Terminal with the motor direction and
the PWM duty cycle used to control the DC Motor’s speed.

The following is the code:

1

© 0 N O O1 » W DN

— =
— O

—_ =
= W DD

import RPi.GPIO as GPIO
import time

from ADCDevice import *

define the pins connected to L293D

motoRPinl = 13

motoRPin2 = 11

enablePin = 15

adc = ADCDevice() # Define an ADCDevice class object

def setup():
global adc
if (adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

elif(adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()
else:
print ("No correct 12C address found, \n”
“"Please use command i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);
exit(-1)
global p
GPI0. setmode (GP10. BOARD)
GPIO. setup (motoRPinl, GPIO. OUT) # set pins to OUTPUT mode
GPTO0. setup (motoRPin2, GPTO. OUT)
GPTO0. setup (enablePin, GPTO. OUT)

p = GPIO. PW(enablePin, 1000) # creat PWM and set Frequence to 1KHz
p. start (0)

mapNUM function: map the value from a range of mapping to another range.
def mapNUM(value, fromLow, fromHigh, toLow, toHigh) :
return (toHigh—toLow)*(value-fromLow) / (fromHigh—fromLow) + toLow

motor function: determine the direction and speed of the motor according to the input
ADC value input
def motor (ADC) :
value = ADC —-128
if (value > 0): # make motor turn forward
GPTO0. output (motoRPinl, GPI0O. HIGH) # motoRPinl output HIHG level
GPTO0. output (motoRPin2, GPIO0. LOW) # motoRPin2 output LOW level
print (Turn Forward...’)
elif (value < 0): # make motor turn backward
GPTO0. output (motoRPinl, GPIO. LOW)
GPTO0. output (motoRPin2, GPTO0. HIGH)
print (Turn Backward...’)
else :
GPTO0. output (motoRPinl, GPIO. LOW)
GPTO0. output (motoRPin2, GPIO0. LOW)
print (Motor Stop...")
p. start (mapNUM (abs (value), 0, 128, 0, 100))
print (" The PWM duty cycle is %d%%\n % (abs(value)*100/127)) # print PMW duty cycle

def loop():
while True:
value = adc. analogRead(0) # read ADC value of channel 0
print (ADC Value : %d %(value))

motor (value)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

time. sleep(0.01)

def destroy():
GPIO. cleanup()

if name == main ' : # Program entrance
print (Program is starting ...)
setup ()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

Now that we have familiarity with reading ADC values, let’s learn the subfunction void motor (int ADC): first,
compare the ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,
motoRPin1 outputs high level and motoRPin2 outputs low level to control the DC Motor to run in the “Forward”
Rotational Direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2
outputs high level to control the DC Motor to run in the “Reverse” Rotational Direction. When the ADC value
is equal to 128, motoRPinl and motoRPin2 output low level, the motor STOPS. Then determine the PWM
duty cycle according to the difference (delta) between ADC value and 128. Because the absolute delta value
stays within 0-128. We need to use the map() subfunction mapping the delta value to a range of 0-255.
Finally, we see a display of the duty cycle in Terminal.
def motor (ADC) :
value = ADC —128
if (value > 0):
GPIO0. output (motoRPinl, GPTO. HIGH)
GPI0. output (motoRPin2, GPTO. LOW)
print (Turn Forward...’)
elif (value < 0):
GPIO0. output (motoRPinl, GPTO. LOW)
GPI0. output (motoRPin2, GPTO. HIGH)
print (Turn Backward...’)

else :
GPIO0. output (motoRPinl, GPTO. LOW)
GPI0. output (motoRPin2, GPTO. LOW)
print (Motor Stop...")
p. start (mapNUM(abs (value), 0, 128, 0, 100))
print (" The PWM duty cycle is %d%%\n" %(abs(value)*100/127)) #print PMW duty cycle

support@freenove.com [l

169

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

www.freenove.com

Chapter 14 Relay & Motor

In this chapter, we will learn a kind of special switch module, Relay Module.

Project 14.1.1 Relay & Motor

In this project, we will use a Push Button Switch indirectly to control the DC Motor via a Relay.

Component List

Raspberry Pi (with 40 GPIO) x1

Breadboard x1

GPIO Expansion Board & Ribbon Cable x1

Jumper Wire x11

—a-aa.- - -

[S ———— .

9V battery (prepared by yourself) & battery line

Breadboard Power module x1

5V OFF 3.3V
EEE NEN

+

5V OFF 3.3V
0000

+ -

Resistor 10kQ x2

Resistor 1kQ x1

Resistor 220Q x1

NPN
transistor x1

Relay x1

Motor x1

AL

Push button x1

LED x1

Diode x1

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Component knowledge

Relay

Relays are a type of Switch that open and close circuits electromechanically or electronically. Relays control
one electrical circuit by opening and closing contacts in another circuit using an electromagnet to initiate the
Switch action. When the electromagnet is energized (powered), it will attract internal contacts completing a
circuit, which act as a Switch. Many times Relays are used to allow a low powered circuit (and a small low
amperage switch) to safely turn ON a larger more powerful circuit. They are commonly found in automobiles,
especially from the ignition to the starter motor.

The following is a basic diagram of a common Relay and the image and circuit symbol diagram of the 5V
relay used in this project:

Diagram Feature: Symbol
/Armature Contactor
Spring 2 -rr'/
N 24 1
= &% ° 3 L
= /I :] DC 5V | o £y
3A 120VAC
L / | A 24VDC | 6
Electromagnet i 4 T 2
Signal power 1 3 5
Load power
o

Pin 5 and pin 6 are internally connected to each other. When the coil pin3 and pin 4 are connected to a 5V
power supply, pin 1 will be disconnected from pins 5 & 6 and pin 2 will be connected to pins 5 & 6. Pin 1 is
called Closed End and pin 2 is called the Open End.

Inductor

The symbol of Inductance is “L" and the unit of inductance is the “Henry” (H). Here is an example of how this
can be encountered: 1H=1000mH, 1mH=1000uH.

An Inductor is a passive device that stores energy in its Magnetic Field and returns energy to
the circuit whenever required. An Inductor is formed by a Cylindrical Core with many Turns of conducting wire
(usually copper wire). Inductors will hinder the changing current passing through it. When the current passing
through the Inductor increases, it will attempt to hinder the increasing movement of current; and when the
current passing through the inductor decreases, it will attempt to hinder the decreasing movement of current.
So the current passing through an Inductor is not transient.

1M L~V L2

The circuit for a Relay is as follows: The coil of Relay can be equivalent to an Inductor, when a Transistor is
present in this coil circuit it can disconnect the power to the relay, the current in the Relay’s coil does not stop
immediately, which affects the power supply adversely. To remedy this, diodes in parallel are placed on both
ends of the Relay coil pins in opposite polar direction. Having the current pass through the diodes will avoid
any adverse effect on the power supply.

support@freenove.com [l

171

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit

Use caution with the power supply voltage needed for the components in this circuit. The Relay requires a
power supply voltage of 5V, and the DC Motor only requires 3.3V. Additionally, there is an LED present, which

R2
1kQ

5V

R1
2200 ZSm

LED1

[l

65

Q1

acts as an indicator (ON or OFF) for the status of the Relay’s active status.

Schematic diagram

5V

PEERERRREF EE

3 -
sl
»
o 2 1
2l T 4 .
R4 INA001 33v. 5V
Refay 2 AN _31spar TXDO!
‘ —2.15CL1 RXDO
—L1GPI04 GPIO18!
al :I MAN 111GPIO17 GPI023!
é) - 13 1GPI1027 GPIO24]|
M 1kQ 15 Gpi022 GPI025]
1 19 IMmosi CEQ|
— 21Imiso CE1]
= 231SCLK SCLO!
2L1SDAD GPIO12]
.) 291GPIO5 GPI1016]
S1LGPIO6 GPI1020
J_ 331GpPI013 GPIO21]
321GPI019
S5V ——33v -34GPIO26 Raspberry Pi
- - GPIO Extension Shield
GND T T GND GND
BreadBoardPower

R1 R2
10kQ 10kQ

=

_I\—|Sl

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

* e o o0
* o0 00
* e o 00
* e e 00

“ s o o0
* e 0 e

eGPI026 GPIO20e
#GND

® 69 s ® 0 s 00 s 00 s e

.lo.‘o..oooo-m...uutt.o..o.....o.ooooo......

Press replay s
R N

for connection. {
-O »

L

+

w
W
<
u
<

AE'E 440 AS AE'E€ 440 NS

support@freenove.com [l

173

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Code

The project code is in the same as we used earlier in the Table Lamp project. Pressing the Push Button Switch
activates the transistor. Because the Relay and the LED are connected in parallel, they will be powered ON at
the same time. Press the Push Button Switch again will turn them both OFF.

CCode 14.1.1 Relay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 14.1.1_Relay directory of C code.

cd ~/Freenove_Kit/Code/C_Code/14.1.1_Relay

2. Use following command to compile "Relay.c” and generate executable file "Relay”.

gcc Relay.c -o Relay -lwiringPi

3. Run the generated file "Relay".

sudo ./Relay

After the program is executed, pressing the Push Button Switch activates the Relay (the internal switch is
closed), which powers the DC Motor to rotate and simultaneously powers the LED to turn ON. If you press
the Push Button Switch again, the Relay is deactivated (the internal switch opens), the Motor STOPS and the
LED turns OFF.

The following is the program code:

finclude <wiringPi.h>
finclude <stdio.h>

#define relayPin 0 //define the relayPin
#define buttonPin 1 //define the buttonPin
int relayState=LOW; //store the State of relay

int buttonState=HIGH; //store the State of button

int lastbuttonState=HIGH;//store the lastState of button

long lastChangeTime; //store the change time of button state
long captureTime=50; //set the button state stable time

int reading;

int main(void)

{

”

printf("Program is starting...\n”);

wiringPiSetup() ;

pinMode (relayPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;
pullUpDnControl (buttonPin, PUD UP); //pull up to high level
while (1) {
reading = digitalRead (buttonPin); //read the current state of button
if (reading != lastbuttonState) { //if the button state changed ,record the time

point

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com]

lastChangeTime = millis();
}
//if changing-state of the button last beyond the time we set, we considered that
//the current button state is an effective change rather than a buffeting
if(millis() - lastChangeTime > captureTime) {
//if button state is changed, update the data
if (reading != buttonState) {
buttonState = reading;
//if the state is low, the action is pressing
if (buttonState == LOW) {
printf("Button is pressed!\n”);
relayState = !relayState;
if (relayState) {

printf (“turn on relay ...\n”);
}
else {

printf ("turn off relay ...\n”);
}

}

//if the state is high, the action is releasing
else {

printf ("Button is released!\n”);

}
digitalWrite(relayPin, relayState) ;
lastbuttonState = reading;

return 0;

}
The project code is in the same as we used earlier in the Table Lamp project.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Python Code 14.1.1 Relay

First observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 14.1.1_Relay directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/14.1.1_Relay

2. Use python command to execute code "Relay.py”.

python Relay.py

After the program is executed, press the button, then the relay is opened, the Motor starts to rotate and LED
turns ON

Python Code 14.1.1 Relay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

3. Use cd command to enter 14.1.1_Relay directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/14.1.1_Relay

4. Use Python command to execute code "Relay.py"”.

python Relay.py

After the program is executed, pressing the Push Button Switch activates the Relay (the internal switch is
closed), which powers the DC Motor to rotate and simultaneously powers the LED to turn ON. If you press
the Push Button Switch again, the Relay is deactivated (the internal switch opens), the Motor STOPS and the
LED turns OFF.

The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3

4 relayPin = 11 # define the relayPin

5 buttonPin = 12 # define the buttonPin

6 debounceTime = 50

7

8 def setup():

9 GPTO. setmode (GPTO. BOARD)

10 GPIO. setup(relayPin, GPI0.OUT) # set relayPin to OUTPUT mode
11 GPIO. setup(buttonPin, GPIO.IN) # set buttonPin to INTPUT mode
12

13 | def loop():

14 relayState = False

15 lastChangeTime = round(time. time ()*1000)

16 buttonState = GPI0. HIGH

17 lastButtonState = GPIO. HIGH

18 reading = GPIO. HIGH

19 while True:

20 reading = GPIO. input (buttonPin)

21 if reading != lastButtonState :

22 lastChangeTime = round(time. time ()*1000)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [NEE

if ((round(time. time ()*1000) - lastChangeTime) > debounceTime) :
if reading != buttonState :
buttonState = reading;
if buttonState == GPIO. LOW:
print ("Button is pressed!”)
relayState = not relayState
if relayState:
print ("Turn on relay ...”)
else :
print ("Turn off relay ... ”)
else :
print ("Button is released!”)
GPIO. output (relayPin, relayState)

lastButtonState = reading # lastButtonState store latest state

def destroy():
GPIO. cleanup ()

if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

The project code is in the same as we used earlier in the Table Lamp project.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Chapter 15 Servo

Previously, we learned how to control the speed and rotational direction of a DC Motor. In this chapter, we
will learn about Servos which are a rotary actuator type motor that can be controlled rotate to specific angles.

Project 15.1 Servo Sweep

First, we need to learn how to make a Servo rotate.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x3
GPIO Expansion Board & Ribbon Cable x1

Breadboard x1

Servo x1

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Component knowledge

Servo

Servo is a compact package which consists of a DC Motor, a set of reduction gears to provide torque, a sensor
and control circuit board. Most Servos only have a 180-degree range of motion via their *horn”. Servos can
output higher torque than a simple DC Motor alone and they are widely used to control motion in model cars,
model airplanes, robots, etc. Servos have three wire leads which usually terminate to a male or female 3-pin
plug. Two leads are for electric power: Positive (2-VCC, Red wire), Negative (3-GND, Brown wire), and the
signal line (1-Signal, Orange wire) as represented in the Servo provided in your Kit.

W=

We will use a 50Hz PWM signal with a duty cycle in a certain range to drive the Servo. The lasting time 0.5ms-
2.5ms of PWM single cycle high level corresponds to the Servo angle 0 degrees - 180 degree linearly. Part of
the corresponding values are as follows:

Note: the lasting time of high level corresponding to the servo angle is absolute instead of accumulating. For
example, the high level time lasting for 0.5ms correspond to the 0 degree of the servo. If the high level time
lasts for another 1ms, the servo rotates to 45 degrees.

High level time | Servo angle
0.5ms 0 degree
Ims 45 degree
1.5ms 90 degree
2ms 135 degree
2.5ms 180 degree

When you change the Servo signal value, the Servo will rotate to the designated angle.

support@freenove.com [l

179

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit

Use caution when supplying power to the Servo it should be 5V. Make sure you do not make any errors when

connecting the Servo to the power supply.

Schematic diagram

3.

' SDA1

1 SCL1
GPIO4
GPIO17

GPI1027

GPI1022

MOSI

RlREBNSREE R o

MISO

1 SCLK
SDAO
GPIO5

' GPI1O6
GPIO013
GPIO19
| GPI1026

GPIO Extension Shield

3V 5v

TXDO)|
RXDO
GPIO18
GPI1023|
GP1024
GPI1025
CEO
CE1
SCLO
GPIO12|
GPIO16
GPI1020
GPIO21

-y

5V

PEFRERRREPER

Raspberry Pi

GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

® o o 0o 0 ® o o 0 0 ® o 0o 0o 0 ® o o 00 ® o 0o 00

® o 0 0o 0 e o 0 0 ® o o 0 o e o 0 0o o ® o o 0 o

Raspberry Pi GPIO Extension Shield

© © 0 0 0 0 9 0 0 00 0 0 0 O 0O 00 G OO O OO GG OO O S G G e e
® © 9 0 9 0 O 0 0 O O O O O O OO G O OO O G GO G SO S G BSOS e e
@ © © © 9 0 9 9 9 O O O O O O O O O G OGO E SO O GGG OGSO OO S S
© © 0 9 0 0 © 0 00 0 0 0O O OO 0O O OO O GG OO SO OGBS S OO O
® © 0 0 0 9 ° 0 00 0 0 0 OO GO G OO OO OO GO OO OSSO e e

® © 0 0 0 0 0 0 00 0 0 0 O O GG OO G OO OGO O OO OGBS S OO e
Pttt et

® © 0 0 0 9 0 0 0 0 0 0 0 O O GG GO OO SO GO O SO OGO S e e
© © 0 0 0 9 © 0 O 0 0 O e P O G OGP SO OO GG OO SO SO e e s
® © © 0 9 0 0 0 0 0 O 6 P OGO S O S E GO S OGO G GO OSSOSO

e 0 00
e o 0o 0 0

® o 0 0 0
e o 0o 0 0

® o 0 0o 0
® o 0 0 0

® o 0 00
® o o 0o o

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com [JksH

Code

In this project, we will make a Servo rotate from 0 degrees to 180 degrees and then reverse the direction to
make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.

CCode 15.1.1 Sweep

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 15.1.1_Sweep directory of C code.

2. Use following command to compile "Sweep.c” and generate executable file "Sweep".

3. Run the generated file "Sweep".

After the program is executed, the Servo will rotate from O degrees to 180 degrees and then reverse the
direction to make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.
The following is the program code:

finclude <wiringPi.h>

#include <softPwm.h>

#include <stdio.h>

#tdefine OFFSET MS 3 //Define the unit of servo pulse offset: 0. lms

fidefine SERVO MIN MS 5+0OFFSET MS //define the pulse duration for minimum angle of servo
fidefine SERVO MAX MS 25+0FFSET MS //define the pulse duration for maximum angle of servo
#define servoPin 1 //define the GPIO number connected to servo

long map(long value, long fromLow, long fromHigh, long tolLow, long toHigh) {
return (toHigh—toLow)*(value—fromLow) / (fromHigh—fromLow) + toLow;
}
void servolnit (int pin) { //initialization function for servo PMW pin
softPwmCreate (pin, 0, 200);
}
void servoWrite(int pin, int angle) { //Specific a certain rotation angle (0-180) for the
servo
if(angle > 180)
angle = 180;
if(angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO_MIN MS, SERVO MAX MS)) ;
}
void servoWriteMS(int pin, int ms) { //specific the unit for pulse(5-25ms) with specific
duration output by servo pin: 0. lms
if(ms > SERVO MAX MS)
ms = SERVO_MAX_MS;
if (ms < SERVO MIN MS)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

ms = SERVO_MIN_MS;

softPwmWrite (pin, ms) ;

int main(void)

int 1i;

printf ("Program is starting ...\n”):

wiringPiSetup () ;

servolnit (servoPin) ; //initialize PMW pin of servo
while (1) {

for (i=SERVO_MIN MS;i<SERVO MAX MS:i++) { //make servo rotate from minimum angle to
maximum angle
servollriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
for (i=SERVO_MAX_MS;i>SERVO MIN MS:i——) { //make servo rotate from maximum angle to
minimum angle
servoWlriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
}
return 0;
}
A 50 Hz pulse for a 20ms cycle is required to control the Servo. In function softPwmCreate (int pin, int
initialValue, int pwmRange), the unit of the third parameter pwmRange is 100US, specifically 0.1ms. In order
to get the PWM with a 20ms cycle, the pwmRange shoulde be set to 200. So in the subfunction of servolnit
(), we create a PWM pin with a pwmRange of 200.

void servolnit (int pin) { //initialization function for servo PWM pin
softPwmCreate (pin, 0, 200);

Since 0-180 degrees of the Servo’s motion corresponds to the PWM pulse width of 0.5-2.5ms, with a
PwmRange of 200 ms. We then need the function softPwmWrite (int pin, int value) and the scope 5-25 of
the parameter values to correspond to 0-180 degrees’ motion of the Servo. What's more, the number written
in subfunction servoWriteMS () should be within the range of 5-25. However, in practice, due to the inherent
error manufactured into each Servo, the pulse width will have a deviation. So we need to define a minimum
and maximum pulse width and an error offset (this is essential in robotics).

- #tdefine OFFSET MS 3 //Define the unit of servo pulse offset: 0.1lms

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com [JKEK]

#tdefine SERVO MIN MS 5+OFFSET MS //define the pulse duration for minimum angle of
sServo
#tdefine SERVO MAX MS 25+0FFSET MS //define the pulse duration for maximum angle of
servo

void servoWriteMS (int pin, int ms) {
if(ms > SERVO MAX MS)
ms = SERVO MAX MS;
if(ms < SERVO MIN MS)
ms = SERVO MIN MS;

softPwmWrite (pin, ms) ;

}
In subfunction servoWrite (), directly input an angle value (0-180 degrees), map the angle to the pulse width
and then output it.

void servoWrite (int pin, int angle) { //Specif a certain rotation angle (0-180) for the
servo
if (angle > 180)
angle = 180;
if(angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO MIN MS, SERVO MAX MS)) ;

}
Finally, in the "while" loop of the main function, use two "for" cycle to make servo rotate from 0 degrees to
180 degrees, and then from 180 degrees to 0 degrees.
while (1) {
for (i=SERVO_MIN_MS; i<SERVO_MAX MS;i++){ //make servo rotate from minimum angle

to maximum angle

servoWlriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
for (i=SERVO_MAX_MS; i>SERVO_MIN MS;i-—){ //make servo rotate from maximum angle
to minimum angle
servoWlriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Python Code 15.1.1 Sweep

First observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 15.1.1_Sweep directory of Python code.

2. Use python command to execute code "Sweep.py".
python Sweep.py
After the program is executed, the Servo will rotate from O degrees to 180 degrees and then reverse the
direction to make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.
The following is the program code:
import RPi.GPIO as GPIO
import time
OFFSE DUTY = 0.5 #define pulse offset of servo
SERVO_MIN_DUTY
SERVO_MAX_DUTY

servoPin = 12

2. 5+0OFFSE_DUTY fidefine pulse duty cycle for minimum angle of servo

12. 5+OFFSE_DUTY fidefine pulse duty cycle for maximum angle of servo

def map(value, fromLow, fromHigh, toLow, toHigh): # map a value from one range to another
range

return (toHigh—toLow)*(value—fromLow) / (fromHigh-fromLow) + toLow

def setup():
global p
GPI0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup (servoPin, GPI0O.OUT) # Set servoPin to OUTPUT mode
GPIO. output (servoPin, GPIO.LOW) # Make servoPin output LOW level

p = GPIO.PW (servoPin, 50) # set Frequece to 50Hz
p. start (0) # Set initial Duty Cycle to 0
def servoWrite (angle) : # make the servo rotate to specific angle, 0-180
if (angle<0) :
angle = 0
elif(angle > 180):
angle = 180

p. ChangeDutyCycle (map (angle, 0, 180, SERVO_MIN_DUTY, SERVO MAX DUTY)) # map the angle to duty
cycle and output it

def loop():
while True:
for dec in range(0, 181, 1): # make servo rotate from 0 to 180 deg
servoWlrite (dc) # Write dc value to servo
time. sleep(0.001)
time. sleep (0. 5)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

for de in range (180, -1, —1): # make servo rotate from 180 to 0 deg
servollrite (dc)
time. sleep (0. 001)

time. sleep (0. 5)

def destroy():

p. stop ()
GPIO0. cleanup ()

if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

A 50 Hz pulse for a 20ms cycle is required to control the Servo. So we need to set the PWM frequency of
servoPin to 50Hz.
[[v = P1o.PWM(servoPin, 50) # Set Frequency to 50Hs

As 0-180 degrees of the Servo’s rotation corresponds to the PWM pulse width 0.5-2.5ms within cycle 20ms
and to duty cycle 2.5%-12.5%. In subfunction servoWrite (angle), map the angle to duty cycle to output the
PWM, then the Servo will rotate to specifically determined angle. However, in practice, due to the inherent
error manufactured into each Servo, the pulse width will have a deviation. So we need to define a minimum
and maximum pulse width and an error offset (this is essential in robotics).

OFFSE_DUTY = 0.5 ftdefine pulse offset of servo

SERVO_MIN_DUTY

SERVO_MAX_DUTY

2. 5+OFFSE_DUTY ftdefine pulse duty cycle for minimum angle of servo

12. 5+OFFSE_DUTY ftdefine pulse duty cycle for maximum angle of servo

def servollirite(angle): #imake the servo rotate to specific angle (0-180 degrees)
if (angle<0) :
angle = 0
elif (angle > 180):
angle = 180
p. ChangeDutyCycle (map (angle, 0, 180, SERVO MIN DUTY, SERVO MAX DUTY))

support@freenove.com [l

185

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Finally, in the "while" cycle of main function, we need to use two separate cycles to make servo rotate from 0
degrees to 180 degrees and then from 180 degrees to 0 degrees.
def loop():

while True:

for dc in range(0, 181, 1): #make servo rotate from 0° to 180°
servollrite (dc) # Write to servo
time. sleep(0.001)

time. sleep (0. 5)

for dc in range(180, —1, —1): #make servo rotate from 180° to 0°
servollrite (dc)
time. sleep(0.001)

time. sleep (0. 5)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [k

Chapter 16 Stepper Motor

Thus far, we have learned about DC Motors and Servos. A DC motor can rotate constantly in on direction but
we cannot control the rotation to a specific angle. On the contrary, a Servo can rotate to a specific angle but
cannot rotate constantly in one direction. In this chapter, we will learn about a Stepper Motor which is also a
type of motor. A Stepper Motor can rotate constantly and also to a specific angle. Using a Stepper Motor can
easily achieve higher accuracies in mechanical motion.

Project 16.1 Stepper Motor

In this project, we will learn how to drive a Stepper Motor, and understand its working principle.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x12
GPIO Expansion Board & Ribbon Cable x1
—-. - -
Breadboard x1
Stepper Motor x1 ULNZ2003 Stepper Motor Driver x1
(@D
A 4

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

Stepper Motor

Stepper Motors are an open-loop control device, which converts an electronic pulse signal into angular
displacement or linear displacement. In a non-overload condition, the speed of the motor and the location
of the stops depends only on the pulse signal frequency and number of pulses and is not affected by changes
in load as with a DC Motor. A small Four-Phase Deceleration Stepper Motor is shown here:

o w s |-
oNw>

PWR
Stepper Motor

12345

The electronic schematic diagram of a Four-Phase Stepper Motor is shown below:

A
B

COM

The outside case or housing of the Stepper Motor is the Stator and inside the Stator is the Rotor. There is a
specific number of individual coils, usually an integer multiple of the number of phases the motor has, when
the Stator is powered ON, an electromagnetic field will be formed to attract a corresponding convex
diagonal groove or indentation in the Rotor’s surface. The Rotor is usually made of iron or a permanent
magnet. Therefore, the Stepper Motor can be driven by powering the coils on the Stator in an ordered
sequence (producing a series of “steps” or stepped movements).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

A common driving sequence is shown here:

AL

\
5

COM COM

COM COM

In the sequence above, the Stepper Motor rotates by a certain angle at once, which is called a “step”. By
controlling the number of rotational steps, you can then control the Stepper Motor's rotation angle. By
defining the time between two steps, you can control the Stepper Motor's rotation speed. When rotating
clockwise, the order of coil powered onis:A=> B> C > D> A >, And the rotor will rotate in accordance
with this order, step by step, called four-steps, four-part. If the coils is powered ON in the reverse order, D >
C 2> B> A > D =, the rotor will rotate in counter-clockwise direction.

There are other methods to control Stepper Motors, such as: connect A phase, then connect A B phase, the
stator will be located in the center of A B, which is called a half-step. This method can improve the stability of
the Stepper Motor and reduces noise. Tise sequence of powering the coils looks like this: A > AB 2> B = BC
2> C—> CD > D > DA > A > the rotor will rotate in accordance to this sequence ar, a half-step at a
time, called four-steps, eight-part. Conversely, if the coils are powered ON in the reverse order the Stepper
Motor will rotate in the opposite direction.

The stator in the Stepper Motor we have supplied has 32 magnetic poles. Therefore, to complete one full
revolution requires 32 full steps. The rotor (or output shaft) of the Stepper Motor is connected to a speed
reduction set of gears and the reduction ratio is 1:64. Therefore, the final output shaft (exiting the Stepper
Motor’s housing) requires 32 X 64 = 2048 steps to make one full revolution.

support@freenove.com [l

189

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

ULN2003 Stepper Motor driver

A ULN2003 Stepper Motor Driver is used to convert weak signals into more powerful control signals in order
to drive the Stepper Motor. In the illustration below, the input signal IN1-IN4 corresponds to the output signal
A-D, and 4 LEDs are integrated into the board to indicate the state of these signals. The PWR interface can
be used as a power supply for the Stepper Motor. By default, PWR and VCC are connected.

L INT A 18
21 1IN2 B |-
31IN3 c fQ
Al INg p [LL
21GND pwr J12
L1 vcc
Ll pwR

ULN2003 Stepper

Motor Driver

Circuit

When building the circuit, note that rated voltage of the Stepper Motor is 5V, and we need to use the
breadboard power supply independently, (Caution do not use the RPi power supply). Additionally, the
breadboard power supply needs to share Ground with Rpi.

Schematic diagram
3.3V 5V

—31SDA1 TXDO b8
—24scL1 RXDO O
—LAGPI04 GPIO18}12 1, N1 Al8 A

11GPI017 GP1023}-16 2] N2 B |2 21p

31GPI027 GPI024}-18 3| N3 c ho___.3]¢

2{GPI022 GPI025}.22 41 1Na p [l_—4]p
19.1mos| CEo24 |[——3]cno pwr f12—S]pwr
21dmiso CE1/26 6] vee
23.1sCcLK SCLO 28 N 7] pWR Stepper Motor
2L1SDAO GPIO12132. ©
L91GPI105 GPIO16 136 ULN2003 Stepper
~311GPIO6 GP1020 .38 Motor Driver
-331GPIO13 GPIO21140. T e
3]-35- GPIO19

GPI1026 Raspberry Pi J_
GPIO Exéeﬁglon Shield SV-%- 1 S5y
GND T T GND
e = BreadBoardPower

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [N

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

#3V3

#SDA1

#SCL1

#GPIO4

#GND

#GPIO17 GPIO1
#GPIO27 GN
#GPI022 GPIO2
#3V3 GPI024e
#MOSI GNDe
#MISO GPIO25#
#SCK CEOe
#GND

#SDAD

#GPIO19 GPIO16e
#GPI026 GPIO20e
#GND GPIO21e

AE'E 440 AS

® © 6 00 0 0 0 00 00 00 0 0 0 0 0

® © o 0o 0 0o ® 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e e c:
© o 6000006000000 00e00e0e e e e e
R R R N N W
® © 0 0 0 @ ¢ 0 00 0 0 0 0 0 0 0 0 00 0 e e e e

® @ o 0o 9 0 ¢ 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 e e 0 <

® © o 9 0 ® ¢ 0 0 0 0 0 00 0 0 0 0 e 0 0 e e e e
® © 0 0o 0 0 ¢ 0 0 0 0 0 0 0 00 0 e 0 0 e e e 0 e ¢

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Code

This code uses the four-step, four-part mode to drive the Stepper Motor in the clockwise and anticlockwise
directions.

C Code 16.1.1 SteppingMotor

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 16.1.1_SteppingMotor directory of C code.

2. Use following command to compile "SteppingMotor.c” and generate executable file "SteppingMotor™”.

3. Run the generated file "SteppingMotor”.

After the program is executed, the Stepper Motor will rotate 360° clockwise and then 360° anticlockwise and
repeat this action in an endless loop.
The following is the program code:

#include <stdio.h>

finclude <wiringPi.h>

const int motorPins[]={1, 4, 5, 6} ; //define pins connected to four phase ABCD of stepper
motor
const int CCWStep[]={0x01, 0x02, 0x04, 0x08} ; //define power supply order for coil for rotating
anticlockwise
const int CWStep[]={0x08, 0x04, 0x02, 0x01} ; //define power supply order for coil for rotating
clockwise
//as for four phase Stepper Motor, four steps is a cycle. the function is used to drive the
Stepper Motor clockwise or anticlockwise to take four steps
void moveOnePeriod(int dir, int ms) {
int i=0, j=0;
for (j=0;j<4;j++){ //cycle according to power supply order
for (i=0;i<4;i++){ //assign to each pin, a total of 4 pins
if(dir == 1) //power supply order clockwise
digitalWrite(motorPins[i], (CCWStep[j] == (1<<i)) ? HIGH : LOW);
else //power supply order anticlockwise
digitalWrite(motorPins[i], (CWStep[j] == (1<<i)) ? HIGH : LOW);
printf ("motorPin %d, %d \n”,motorPins[i], digitalRead(motorPins[i]));
}
printf ("Step cycle!\n”);
if (ms<3) //the delay can not be less than 3ms, otherwise it will exceed speed
limit of the motor
ms=3;

delay (ms) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B ww.freenove.com

D4 support@freenove.com

}

//continuous rotation function, the parameter steps specifies the rotation cycles, every four

Steps is a cycle

void moveSteps(int dir, int ms, int steps) {
int 1i;
for (i=0;i<{steps;i++) {

moveOnePeriod (dir, ms) ;

}
void motorStop () {
int i;
for (i=0;i<4;i++) {
digitalWrite (motorPins[i], LOW);

}
}
int main(void) {
int 1i;
printf ("Program is starting ...\n”);
wiringPiSetup () ;

for (i=0;1<4;i++) {
pinMode (motorPins[i], OUTPUT) ;

}
while (1) {
moveSteps (1, 3, 512) ; //rotating 360
namely, 512 cycles
delay (500) ;
moveSteps (0, 3, 512) ; //rotating 360
delay (500) ;
}
return 0;

}

//function used to stop rotating

o

o

clockwise, a total of 2048 steps in a circle,

anticlockwise

In the code we define the four pins of the Stepper Motor and the order to supply power to the coils for a

four-step rotation mode.

const int motorPins[]={1, 4,5, 6} ;
motor

const int CCWStep[]={0x01, 0x02, 0x04, 0x08} ;
rotating anticlockwise

const int CWStep[]=1{0x08, 0x04, 0x02, 0x01} ;

rotating clockwise

//define pins connected to four phase ABCD of stepper

//define power supply order for coil for

//define power supply order for coil for

Subfunction moveOnePeriod ((int dir,int ms) will drive

the Stepper Motor rotating four-step clockwise or

support@freenove.com [l

193

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

anticlockwise, four-step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the
servo will rotate clockwise, otherwise it rotates to anticlockwise. Parameter "ms" indicates the time between
each two steps. The "ms" of Stepper Motor used in this project is 3ms (the shortest time period), a value of
less than 3ms will exceed the limits of the Stepper Motor with a result that it does not rotate.

void moveOnePeriod (int dir, int ms) {
int i=0, j=0;
for (j=0;j<4;j++){ //cycle according to power supply order
for (i=0;i<4;i++){ //assign to each pin, a total of 4 pins
if(dir == 1) //power supply order clockwise
digitalWrite (motorPins[i], (CCWStep[j] == (1<<i)) ? HIGH : LOW);
else //power supply order anticlockwise
digitalWrite (motorPins[i], (CWStep[j] == (1<<i)) ? HIGH : LOW);
printf (“motorPin %d, %d \n”, motorPins[i], digitalRead (motorPins[i]));
}
printf ("Step cyelel\n”);
if (ms<3) //the delay can not be less than 3ms, otherwise it will exceed
speed limit of the motor
ms=3;

delay (ms) ;

—

}

Subfunction moveSteps (int dir, int ms, int steps) is used to specific cycle number of Stepper Motor.

void moveSteps(int dir, int ms, int steps) {
int 1i;
for(i=0;i<steps;it+) {

moveOnePeriod (dir, ms) ;

[—;

}
Subfunction motorStop () is used to stop the Stepper Motor.

void motorStop() { //function used to stop rotating
int i;

for (1=0;i<4;i++) {

digitalWrite (motorPins[i], LOW) ;

——

}

Finally, in the while loop of main function, rotate one revolution clockwise, and then one revolution

anticlockwise. According to the previous material covered, the Stepper Motor one revolution requires 2048
steps, that is, 2048/4=512 cycle.

while (1) {
moveSteps (1, 3,512) ; //rotating 360° clockwise, a total of 2048 steps in a
circle, namely, this function(four steps) will be called 512 times
delay (500) ;
moveSteps (0, 3,512) ; //rotating 360° anticlockwise
delay (500) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com DM} support@freenove.com KR

B |

Python Code 16.1.1 SteppingMotor

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 16.1.1_SteppingMotor directory of Python code.

2. Use Python command to execute code "SteppingMotor.py"”.

After the program is executed, the Stepper Motor will rotate 360° clockwise and then 360° anticlockwise and
repeat this action in an endless loop.

The following is the program code:
import RPi.GPIO as GPIO

import time

motorPins = (12, 16, 18, 22) # define pins connected to four phase ABCD of stepper motor
CCWStep = (0x01, 0x02, 0x04, 0x08) # define power supply order for rotating anticlockwise
CWStep = (0x08, 0x04, 0x02, 0x01) # define power supply order for rotating clockwise

def setup():
GPIO. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering
for pin in motorPins:

GPI0. setup (pin, GP10. OUT)

as for four phase Stepper Motor, four steps is a cycle. the function is used to drive the
Stepper Motor clockwise or anticlockwise to take four steps

def moveOnePeriod(direction, ms) :

for j in range(0,4,1): # cycle for power supply order
for i in range(0,4,1): # assign to each pin
if (direction == 1):# power supply order clockwise
GPI0. output (motorPins[i], ((CCWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW))
else : # power supply order anticlockwise
GPIO. output (motorPins[i], ((CWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW))
if (ms<3) : # the delay can not be less than 3ms, otherwise it will exceed speed

limit of the motor
ms = 3

time. sleep (ms*0. 001)

continuous rotation function, the parameter steps specify the rotation cycles, every four
steps is a cycle
def moveSteps(direction, ms, steps):

for i in range(steps):

moveOnePeriod (direction, ms)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

function used to stop motor
def motorStop():
for i in range(0,4,1):
GPIO0. output (motorPins[i], GPTO. LOW)

def Toop():
while True:
moveSteps (1, 3,512) # rotating 360 deg clockwise, a total of 2048 steps in a circle,
512 cycles
time. sleep (0. 5)
moveSteps (0, 3,512) # rotating 360 deg anticlockwise
time. sleep (0. 5)

def destroy():

GPIO0. cleanup () # Release resource
if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the code we define the four pins of the Stepper Motor and the order to supply power to the coils for a
four-step rotation mode.

motorPins = (12, 16, 18, 22) #tdefine pins connected to four phase ABCD of stepper

motor

CCWStep = (0x01, 0x02, 0x04, 0x08) #define power supply order for coil for rotating
anticlockwise
CWStep = (0x08, 0x04, 0x02, 0x01) #define power supply order for coil for rotating

clockwise

Subfunction moveOnePeriod ((int dir, int ms) will drive the Stepper Motor rotating four-step clockwise or
anticlockwise, four-step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the
servo will rotate clockwise, otherwise it rotates to anticlockwise. Parameter "ms" indicates the time between
each two steps. The "ms" of Stepper Motor used in this project is 3ms (the shortest time period), a value of
less than 3ms will exceed the limits of the Stepper Motor with a result that it does not rotate.

def moveOnePeriod(direction, ms) :
for j in range(0, 4, 1) : #cycle for power supply order
for i in range(0,4, 1): #assign to each pin, a total of 4 pins
if (direction == 1) :#ipower supply order clockwise
GPTO0. output (motorPins[i], ((CCWStep[j] == 1<<i) and GPIO0.HIGH orGPIO. LOW))
else : fipower supply order anticlockwise
GPTO. output (motorPins[i], ((CWStep[j] == 1<<i) and GPIO0.HIGH or GPIO0.LOW))

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

if(ms<3) : #ithe delay can not be less than 3ms, otherwise it will exceed
speed limit of the motor
ms = 3
time. sleep (ms*0.001)

Subfunction moveSteps (direction, ms, steps) is used to specify the cycle number of Stepper Motor.

def moveSteps(direction, ms, steps):
for i in range(steps):

moveOnePeriod (direction, ms)

Subfunction motorStop () is used to stop the Stepper Motor.

def motorStop() :

for i in range(0, 4, 1) :

GPI0. output (motorPins[i], GPT0. LOW)

Finally, in the while loop of main function, rotate one revolution clockwise, and then one revolution
anticlockwise. According to the previous material covered, the Stepper Motor one revolution requires 2048
steps, that is, 2048/4=512 cycle.

while True:

moveSteps (1, 3,512) #Hrotating 360° clockwise, a total of 2048 steps in a
circle, namely, 512 cycles

time. sleep (0. 5)

moveSteps (0, 3,512) #Hrotating 360° anticlockwise

time. sleep (0. 5)

support@freenove.com [l

197

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

www.freenove.com .

Chapter 17 74HC595 & Bar Graph LED

We have used LED Bar Graph to make a flowing water light, in which 10 GPIO ports of RPi are occupied. More
GPIO ports mean that more peripherals can be connected to RPi, so GPIO resource is very precious. Can we
make flowing water light with less GPIO ports? In this chapter, we will learn a component, 74HC595, which

can achieve the target.

Project 17.1 Flowing Water Light

Now let us learn how to use the 74HC595 IC Chip to make a flowing water light using less GPIO.

Component List

Raspberry Pi (with 40 GPIO) x1

Breadboard x1

GPIO Extension Board & Ribbon Cable x1

Jumper x17

—-- - -

74HC595 x1

Bar Graph LED x1

Resistor 220Q x8

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

support@freenove.com [EEEEE]

Component knowledge

74HC595

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data
of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this
characteristic, the 74HC595 chip can be used to expand the IO ports of a Raspberry Pi. At least 3 ports on the

RPI board are required to control the 8 ports of the 74HC595 chip.

1 16 - a1 vee fi2
2 15 3 Q2 QO i
3 14 o E DS |5
4 13 <1 Q4 OF |5
5 12 = Q5 STCP |55
6 11 = Q6 SH_CP 0
7 10 <1 Q7 MR [5-
8 9 —] GND Q7 =
74HC595
The ports of the 74HC595 chip are described as follows:
Pin name Pin number Description
Q0-Q7 15, 1-7 Parallel Data Output
VCC 16 The Positive Electrode of the Power Supply, the Voltage is 2~6V
GND 8 The Negative Electrode of Power Supply
DS 14 Serial Data Input
OE 13 Enable Output,
When this pin is in high level, Q0-Q7 is in high resistance state
When this pin is in low level, Q0-Q7 is in output mode
ST_CP 12 Parallel Update Output: when its electrical level is rising, it will update the
parallel data output.
SH_CP 11 Serial Shift Clock: when its electrical level is rising, serial data input register
will do a shift.
MR 10 Remove Shift Register: When this pin is in low level, the content in shift
register will be cleared.
Qr 9 Serial Data Output: it can be connected to more 74HC595 chips in series.

For more details, please refer to the datasheet on the 74HC595 chip.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Circuit

Schematic diagram

3
3.3V 5V
—3.1SDA1 TXDO }=8—
et SCL 1 RXDO }-10-.
—LIGPI04 GPlIO18}12~
111Gpi017 GPI023 |16
,__-131GPI027 GPI024 |18
—__.121GpI022 GPI1025 |22
—194MmoslI CEO0 24—
21Imiso CE1 |28
231scLK SCLO}28-
2L14spao GPIO12}32
291GPI05 GPI016 36—
S11GPios GPI1020 |38
23 1GPIO13 GPI021 140
% GPIO19
GPIO26 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

=

.

1
® ® o0 000000 000 0 0
® © 00 00 0 000000 0 0
® ® o000 0000 000 0 0
LR

® © 0 0 00 0000 0 0 0 0
® ® o 0 000000 0 00

Pttt

Raspberry Pi GPIO Extension Shield

LI ® ® 00 0 0 0 0000 00 0
1 ;-..oo.oooo.ooo

. o 0 00 ® e 0o 00

. . L B B LA B B L B L R

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com |J4sl

Code

In this project we will make a flowing water light with a 74HC595 chip to learn about its functions.
C Code 17.1.1 LightWater02

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 17.1.1_LightWater02 directory of C code.

2. Use following command to compile “LightWater02.c” and generate executable file “LightWater02".

3. Then run the generated file “LightWater02".

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.
The following is the program code:

finclude <wiringPi.h>
#include <stdio.h>
finclude <wiringShift.h>

#tdefine dataPin 0 //DS Pin of 74HC595(Pinl4)
#tdefine latchPin 2 //ST _CP Pin of 74HC595(Pinl2)
fidefine clockPin 3 //CH CP Pin of 74HC595 (Pinl1)

void shiftOut (int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 8; i+4){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {//if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
1
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

int main(void)

{

int 1i;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

unsigned char x;

printf("Program is starting ...\n”);

wiringPiSetup() ;

pinMode (dataPin, OUTPUT) ;
pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
x=0x01;
for (i=0;i<8;i++) {
digitalWrite (latchPin, LOW) ; // Output low level to latchPin
~shiftOut (dataPin, clockPin, LSBFIRST, x) ;// Send serial data to 74HC595
digitalWrite(latchPin, HIGH) ; //Output high level to latchPin, and 74HC595 will
update the data to the parallel output port

x<<=1; //make the variable move one bit to left once, then the bright LED
move one step to the left once
delay (100) ;
}
x=0x80;

for (i=0;1<8;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay (100) ;

}
return 0;
}
In the code, we configure three pins to control the 74HC595 chip and define a one-byte variable to control
the state of the 8 LEDs (in the Bar Graph LED Module) through the 8 bits of the variable. The LEDs light ON
when the corresponding bit is 1. If the variable is assigned to 0x01, that is 00000001 in binary, there will be
only one LED ON.
! x=0x01;
In the “while” cycle of main function, use two cycles to send x to 74HC595 output pin to control the LED. In
one cycle, x will shift one bit to the LEFT in one cycle, then when data of x is sent to 74HC595, the LED that is
turned ON will move one bit to the LEFT once.
for (i=0;1<8;i++) {
digitalWrite (latchPin, LOW) ; // Output low level to latchPin
_shiftOut (dataPin, clockPin, LSBFIRST, x) :// Send serial data to 74HC595
digitalWrite (latchPin, HIGH) ; // Output high level to latchPin, and 74HC595
will update the data to the parallel output port

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com AV

x<<=1; // make the variable move one bit to left once, then the bright LED
move one step to the left once.
delay (100) ;

In second cycle, the situation is the same. The difference is that x is shift from 0x80 to the RIGHT in order.
"<<"is the left shift operator, which can make all bits of 1 byte shift by several bits to the left (high) direction
and add 0 on the right (low). For example, shift binary 00000001 by 1 bit to left:

bytex = 1 << 1;

- [oTeTeTe o o o]~ [0]
The result of x is 2 (binary 00000010) .
oo e e o o q]

There is another similar operator” >>". For example, shift binary 00000001 by 1 bit to right:
bytex =1>>1,;
— — — — — — —
(o|—~[ofojoJofoJoJofu1|~
The result of x is 0 (00000000) .
[oJofofoJofofo]o]

X <<= lisequivalenttox = x << land x >>= lisequivalenttox = x >> 1
About shift function

This is used to shift an 8-bit data value in with the data appearing on the dPin and the clock being sent out
on the cPin. Order is either LSBFIRST or MSBFIRST. The data is sampled after the cPin goes high. (So cPin
high, sample data, cPin low, repeat for 8 bits) The 8-bit value is returned by the function.

This is used to shift an 8-bit data value out with the data being sent out on dPin and the clock being sent
out on the cPin. order is as above. Data is clocked out on the rising or falling edge - ie. dPin is set, then

cPin is taken high then low - repeated for the 8 bits.

For more details about shift function, please refer to: http://wiringpi.com/reference/shift-library/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/shift-library/

4 support@freenove.com www.freenove.com [l

Python Code 17.1.1 LightWater02

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 17.1.1_LightWater02 directory of Python code.

2. Use python command to execute Python code “LightWater02.py”".

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.
The following is the program code:

import RPi.GPIO as GPIO

import time

Defines the data bit that is transmitted preferentially in the shiftOut function.

LSBFIRST = 1

MSBFIRST = 2

define the pins for 74HC595

dataPin = 11 # DS Pin of 74HC595(Pinl4)
latchPin = 13 # ST _CP Pin of 74HC595(Pinl2)

clockPin = 15 # CH CP Pin of T74HC595(Pinll)

def setup():
GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup (dataPin, GPIO.OUT) # set pin to OUTPUT mode
GPIO0. setup(latchPin, GPIO. OUT)
GPIO0. setup(clockPin, GPIO. OUT)

shiftOut function, use bit serial transmission.
def shiftOut (dPin, cPin, order, val) :
for i in range(0, 8) :
GPI0. output (cPin, GPTO. LOW) ;
if (order == LSBFIRST) :
GPI0. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPI0.LOW)
GPI0. output (cPin, GPTO. HIGH) ;

def loop():
while True:
x=0x01
for i in range(0, 8) :
GPIO0. output (1atchPin, GPIO. LOW) # Output low level to latchPin
shiftOut (dataPin, clockPin, LSBFIRST, x) # Send serial data to 74HC595
GPIO0. output (1atchPin, GPIO0. HIGH) # Output high level to latchPin, and 74HC595 will
update the data to the parallel output port

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

x<<=1 # make the variable move one bit to left once, then the bright LED move one
step to the left once
time. sleep(0. 1)
x=0x80
for i in range (0, 8):
GPI0. output (latchPin, GP10. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, x)
GPI0. output (1atchPin, GP10. HIGH)
xo>=1
time. sleep(0. 1)

def destroy():
GPIO0. cleanup ()

if name ==’ main_’: # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the code, we define a shiftOut() function, which is used to output values with bits in order, where the dPin
for the data pin, cPin for the clock and order for the priority bit flag (high or low). This function conforms to
the operational modes of the 74HC595. LSBFIRST and MSBFIRST are two different flow directions.

def shiftOut(dPin, cPin, order, val) :
for i in range (0, 8) :
GPI0. output (cPin, GPIO. LOW) ;
if(order == LSBFIRST) :
GPI0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO. LOW)

GPI0. output (cPin, GPI0. HIGH) ;

In the loop() function, we use two cycles to achieve the action goal. First, define a variable x=0x01, binary
00000001. When it is transferred to the output port of 74HC595, the low bit outputs high level, then an LED
turns ON. Next, x is shifted one bit, when x is transferred to the output port of 74HC595 once again, the LED
that turns ON will be shifted. Repeat the operation, over and over and the effect of a flowing water light will
be visible. If the direction of the shift operation for x is different, the flowing direction is different.

def loop():
while True:
x=0x01

for i in range (0, 8) :

GPIO. output (latchPin, GPIO. LOW) #Output low level to latchPin

support@freenove.com [l

205

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

shiftOut (dataPin, clockPin, LSBFIRST, x) #Send serial data to 74HC595
GPIO. output (latchPin, GPIO. HIGH) #Output high level to latchPin, and 74HC595
will update the data to the parallel output port
x<{<{=1# make the variable move one bit to left once, then the bright LED move
one step to the left once.
time. sleep (0. 1)
x=0x80
for i in range (0, 8) :
GPTO0. output (latchPin, GPTO. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, x)
GPTO0. output (latchPin, GPTO. HIGH)
x>>=1
time. sleep (0. 1)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com R4S

Chapter 18 74HC595 & 7-Segment Display

In this chapter, we will introduce the 7-Segment Display.

Project 18.1 7-Segment Display

We will use a 74HC595 IC Chip to control a 7-Segment Display and make it display sixteen decimal characters
"0" to “F".

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x18

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

74HC595 x1 7-Segment Display x1 Resistor 220Q x8

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

7-segment display
A 7-Segment Display is a digital electronic display device. There is a figure "8" and a decimal point represented,
which consists of 8 LEDs. The LEDs have a Common Anode and individual Cathodes. Its internal structure and

pin designation diagram is shown below:

:0 L
L. = T

1 9 10 5

3,8

As we can see in the above circuit diagram, we can control the state of each LED separately. Also, by combining
LEDs with different states of ON and OFF, we can display different characters (Numbers and Letters). For
example, to display a “0": we need to turn ON LED segments A, B, C, D, E and F, and turn OFF LED segments

s
n

In this project, we will use a 7-Segment Display with a Common Anode. Therefore, when there is an input low
level to an LED segment the LED will turn ON. Defining segment “A” as the lowest level and segment “DP” as
the highest level, from high to low would look like this: “DP”, “G”, “F”", “E", “D", “C”, “B", "A". Character "0"
corresponds to the code: 1100 0000b=0xcO0.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EAGE]

Circuit

Schematic diagram

w
w

3.3V 3.3V 5V
Q0 ,N\/\J] —3-1SDA1 TXDO =8~
Q1 o—— A Ha vee]g ~21sCL1 RXDO |10~
2 —— W 4@ Qo |3 —L1GPI04 GPIO18}12
oz —\W\ 13 DS |13 1 1GPIO17 GP1023}-16
Qi —AW Q4 OF |3 ___-131GPI1027 GPI024 |18
O AN 2los stcp fE—1" -131GPIO22 GPI025 {-22—
a5 —\W\ Slas sHcp p—o[-12{MosI CEOQ}-24—
Q7 MA a7 MR 9——|é,~; 211IMISO CE1125
o —>{ GND Q7 |2 -231scLk SCLO 28~
— Lo -2L4SDAO GPIO12}32—
- — 29GPI05 GPI016{-36—
= 3lcpios GPI020}38
TSEGMENT -334GPI013 GPI021 {40
%Gplmg
GPI1026 Raspberry Pi
GPIO Extension Shield

(> —L

Dp i

CcCOM —

o <2 > ®

TXDO» 303
RXDO» £33

o 000000 00 o e o0 0
ﬂoooo'oo- R . . .
u
e e o e o0 0
it et
L e e e 0 0 0

el G 6 ¢ o e o
wlh ® © o 0 0 0 0 ®
o 600000000

DY #GP104

Raspberry Pi GPIO Extension Shield

RRRR R R R R R R R R R R EREEERRRRRRRERE |

. LR O L R A
. L L B B

Code

This code uses a 74HC595 IC Chip to control the 7-Segment Display. The use of the 74HC595 IC Chip is

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

generally the same throughout this Tutorial. We need code to display the characters “0” to “F” one character

at a time, and then output to display them with the 74HC595 IC Chip.

C Code 18.1.1 SevenSegmentDisplay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 18.1.1_SevenSegmentDisplay directory of C code.

cd ~/Freenove_Kit/Code/C_Code/18.1.1_SevenSegmentDisplay

2. Use following command to compile “SevenSegmentDisplay.c” and generate executable file
“SevenSegmentDisplay”.

gcc SevenSegmentDisplay.c -o SevenSegmentDisplay -lwiringPi

3. Then run the generated file “SevenSegmentDisplay”.

sudo ./SevenSegmentDisplay

After the program is executed, the 7-Segment Display starts to display the characters “0” to “F” in succession.

The following is the program code:

finclude <wiringPi.h>
#include <stdio.h>
finclude <wiringShift.h>

#define dataPin 0 //DS Pin of 74HC595(Pinl4)

#tdefine latchPin 2 //ST CP Pin of 74HC595(Pinl2)

fidefine clockPin 3 //CH _CP Pin of 74HC595(Pinl1)

//encoding for character 0-F of common anode SevenSegmentDisplay.

unsigned char
num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e} ;

void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 8; i++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {//if(order == MSBFIRST) {
digitalWrite (dPin, ((0x80&(val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
1
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

int main(void)

{

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

int i;

printf ("Program is starting ...\n”):

wiringPiSetup() ;

pinMode (dataPin, OUTPUT) ;
pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
for (i=0;i<sizeof (num) ; i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ;//Output the figures and the highest
level is transfered preferentially
digitalWrite(latchPin, HIGH) ;
delay (500) ;
}
for (i=0;i<sizeof (num) ;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i] & 0x7f);//Use the "&0x7f” to display
the decimal point
digitalWrite(latchPin, HIGH) ;
delay (500) ;

}

return 0;

}

First, we need to create encoding for characters “0” to “F” in the array.

unsigned char
num[]=1{0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e} ;

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively.
SevenSegmentDisplay can then correctly display the corresponding characters. Pay attention to this in regard
to shiftOut function, the transmission bit, flag bit and highest bit will be transmitted preferentially.

for (i=0;i<sizeof (num) ;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ;//Output the figures and the
highest level is transfered preferentially.
digitalWrite (latchPin, HIGH) ;
delay (500) ;
}

If you want to display the decimal point, make the highest bit of each array “0", which can be implemented
easily by num[i]&O0x7f.

_shiftOut (dataPin, clockPin, MSBFIRST, num[i] & 0x7f) ;

support@freenove.com [l

211

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Python Code 18.1.1 SevenSegmentDisplay
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 18.1.1_SevenSegmentDisplay directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/18.1.1_SevenSegmentDisplay
2. Use Python command to execute Python code “SevenSegmentDisplay.py”.
python SevenSegmentDisplay.py
After the program is executed, the 7-Segment Display starts to display the characters “0” to “F” in succession.
The following is the program code:
import RPi.GPIO as GPIO

import time

LSBFIRST = 1

MSBFIRST = 2

#tdefine the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pinl4)
latchPin = 13 #ST CP Pin of 74HC595(Pinl2)
clockPin = 15 #CH CP Pin of 74HC595(Pinll)

#SevenSegmentDisplay display the character "0”— “F”successively
num = [0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e]
def setup():

GPI0. setmode (GP10. BOARD) # Number GPIOs by its physical location

GPIO0. setup (dataPin, GPIO.OUT)

GPTO0. setup (latchPin, GPIO. OUT)

GPTO0. setup(clockPin, GPIO.OUT)

def shiftOut(dPin, cPin, order, val) :
for i in range (0, 8) :
GPIO. output (cPin, GPIO. LOW) ;
if(order == LSBFIRST) :
GPI0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO. LOW)
GPI0. output (cPin, GPI0. HIGH) ;

def loop():
while True:
for i in range(0, len (num)) :
GPTO0. output (latchPin, GPTO. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, num[i]) #Output the figures and the highest
level is transfered preferentially.
GPIO0. output (latchPin, GPTO. HIGH)
time. sleep (0. 5)

for i in range(0, len (num)) :

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com AR

GPTO0. output (latchPin, GPTO. LOW)

shiftOut (dataPin, clockPin, MSBFIRST, num[i]&0x7f) #Use “&0x7f”to display the
decimal point

GPTO0. output (latchPin, GPTO. HIGH)

time. sleep (0. 5)

def destroy():
GPIO. cleanup()

if name == main ’: # Program starting from here
print (" Program is starting...’)
setup()
try:
Loop ()
except KeyboardInterrupt:
destroy ()

First, we need to create encoding for characters “0” to “F” in the array.

! num = [0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e]

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively.
SevenSegmentDisplay can then correctly display the corresponding characters. Pay attention to this in regard
to shiftOut function, the transmission bit, flag bit amd highest bit will be transmitted preferentially.

for i in range (0, len(num)) :
GPI0. output (1atchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, num[i]) #Output the figures and the highest
level is transfered preferentially
GPI0. output (latchPin, GPI0. HIGH)
time. sleep (0. 5)

If you want to display the decimal point, make the highest bit of each array “0", which can be implemented
easily by num[i]&O0x7f.
shiftOut (dataPin, clockPin, MSBFIRST, num[i]&0x7f) # Use “&0x7f” to display the decimal

point.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Project 18.2 4-Digit 7-Segment Display

Now, let’s try to control more-than-one digit displays by using a Four 7-Segment Display in one project.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x30

GPIO Expansion Board & Wire x1

—-a--. 44444444
Breadboard x1
74HC595 x1 PNP 4-Digit 7-Segment Display x1 Resistor 220QQ | Resistor 1KQ

transistor x4 x8 x4

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com A

Component knowledge

4 Digit 7-Segment Display

A 4 Digit 7-segment display integrates four 7-Segment Displays into one module, therefore it can display
more characters. All of the LEDs contained have a Common Anode and individual Cathodes. Its internal
structure and pin designation diagram is shown below:

121110987

123456

The internal electronic circuit is shown below, and all 8 LED cathode pins of each 7-Segment Display are
connected together.

|12 |9 |8 |6
'l,_,l.. 'I,_,I_ 'I'_,I_ 'II_'I_
VAVAVAVAVAVAV Y VA VAVAVAVAVAVAV A VA VAVAVAVAVAVAV A VAVAVAVAVAVAVA A

1117 14 |12 |1 |110|5 |3

Display method of 4 Digit 7-segment display is similar to 1 Digit 7-segment display. The difference between
them is that the 4-Digit displays each Digit is visible in turn, one by one and not together. We need to first
send high level to the common end of the first Digit Display, and send low level to the remaining three
common ends, and then send content to 8 LED cathode pins of the first Digit Display. At this time, the first 7-
Segment Display will show visible content and the remaining three will be OFF.

Similarly, the second, third and fourth 7-Segment Displays will show visible content in turn by scanning the
display. Although the four number characters are displayed in turn separately, this process is so very fast that
it is unperceivable to the naked eye. This is due to the principle of optical afterglow effect and the vision
persistence effect in human sight. This is how we can see all 4 number characters at the same time. However,
if each number character is displayed for a longer period, you will be able to see that the number characters
are displayed separately.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Circuit
Schematic diagram
3.3V 3.3V 3.3V
Q4
 GPI027 . Gp1022 “Mos
R11 R10 R9
1kQ 1kQ 1kQ
9 8 6
B 18 |4 |5 | 1 |8 I8 B I8 B H |H |4 |15 18 15 1B |8 H |8 |4 |5 1H H |8
SYAATAATALTAATAAVAAVARTAATAATAAVAATAAVAAVAATARAVANVAAVAATAATAL VAL TAATAATANVAAAATAATANANTAATAY
117 j4]2 |1 |10]|5 |3
3.3V
220Q ;’{
33V 5V
—3SDA1 TXDO -8
[—21SCL1 RXDO |10
3[isle —L1GPIO4 GPI018}12—Grioig
] | I GPIO17 :13 GPIO17 GPIO23 g GPI023
= e oo s
R 3.3)
i MOs! 19 4MOsSI CEO
4 1; ARIVIEYe) CE1}26-
parcsss g J—— Q1 vee fr ~234SCLK SCLO}28-
74HCS95 02— Q2 Q0 [+ 74HC595_Q 2L1SDAO GPIO12}32
[74HC595 Q3 ——7 Q3 DS [z GPIO2 -294GPIO5 GPIO16 {36
Tancsss 04— o] Q4 ot f—| -311GpPIOs GPI020[38~
74HC595_Q5 e1Q5 STCP 13 -331GPIO13 GPI021 140
74HC595.Q6 ———] Q6 SH_CP m) GPIO1§ .. 351GPI019
[7arC595 Q7)—— gzm g;% N @ -34GPI026 Raspberry Pi
‘ GPIO Extension Shield
74HC595 GND

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [N

Hardware connection

Raspberry Pi GPIO Extension Shield

.
.

o . .

LI o kS

oo o .
.
. .
.

L) .o

= o °
LR g ES
L) B

- .

#GPIO6 GPIO12e
#GPIO13 GNDe
#GPIO19 GPIO16e

e
)
. e
L 2
o
L 2
e
oo
¢ e .
D e .
o e e .
L) L) °
e .
L e e .
° e L) °
. .
e e ° e .
o e ° e .
. .
° e e .
° e . .
e e o
° e L)
LIS LR ¢ ¢ CGEE——
% . ¢ ¢ GEEEEEES
¢ o ¢ o
o ¢ ¢ ¢
|0.| . e ¢ ¢ ¢ o
3 L)
D ¢ e ¢ G
/ L
o o e e e e o e
L e RO
= —
LI . . ® e e
o)
. X .o
. . © L)
oo e
. . e C
e e L)
e o
e e e e
Le e .o
.
L) .o
D)
L)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Code

In this code, we use the 74HC595 IC Chip to control the 4-Digit 7-Segment Display, and use the dynamic
scanning method to show the changing number characters.

C Code 18.2.1 StopWatch

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 16.1.1_SteppingMotor directory of C code.

cd ~/Freenove_Kit/Code/C_Code/18.2.1_StopWatch

2. Use following command to compile "StopWatch.c" and generate executable file "StopWatch".

gcc StopWatch.c -o StopWatch -lwiringPi

3. Run the generated file "SteppingMotor”.

sudo ./StopWatch

After the program is executed, the 4-Digit 7-Segment Display starts displaying a four-digit number
dynamically, and the numeric value of this number will increase by plus 1 each second thereafter.

The following is the program code:

finclude <wiringPi.h>
#include <stdio.h>
finclude <wiringShift.h>
finclude <signal.h>
#include <unistd.h>
#define dataPin 5 //DS Pin of 74HC595(Pinl14)
ftdefine latchPin 4 //ST CP Pin of 74HC595(Pinl2)
ftdefine clockPin 1 //CH_CP Pin of 74HC595(Pinl1)
const int digitPin[]={0, 2,3, 12}; // Define 7—-segment display common pin
// character 0-9 code of common anode 7-segment display
unsigned char num[]={0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90} ;
int counter = 0; //variable counter, the number will be displayed by 7-segment display
//0Open one of the 7-segment display and close the remaining three, the parameter digit is
optional for 1,2,4,8
void selectDigit(int digit) {
digitalWrite (digitPin[0], ((digit&0x08) == 0x08) ? LOW : HIGH);
digitalWrite(digitPin[1], ((digit&0x04) == 0x04) ? LOW : HIGH);
digitalWrite(digitPin[2], ((digit&0x02) == 0x02) ? LOW : HIGH);
digitalWrite(digitPin[3], ((digit&0x01) == 0x01) ? LOW : HIGH);
}
void _shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 8; i++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);

delayMicroseconds (1) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com |JRAE]

}

else {//if(order == MSBFIRST) {
digitalWrite (dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (1) ;

}

digitalWrite (cPin, HIGH) ;

delayMicroseconds (1) ;

}
}
void outData(7nt8 t data) { //function used to output data for 74HC595
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, data) ;
digitalWrite (latchPin, HIGH) ;
}

void display(int dec) { //display function for 7-segment display
int delays = 1;

outData (0xfTf) ;
selectDigit (0x01) ; //select the first, and display the single digit
outData (num[dec%10]) ;
delay (delays) ; //display duration
outData (0xff) ;
selectDigit (0x02) ; //select the second, and display the tens digit
outData (num[dec%100/10]) ;
delay (delays) ;
outData (0xfT) ;
selectDigit (0x04) ; //select the third, and display the hundreds digit
outData (num[dec%1000/100]) ;
delay (delays) ;
outData (0xfT) ;
selectDigit (0x08) ; //select the fourth, and display the thousands digit
outData (num[dec%10000/1000]) ;
delay (delays) ;
}
void timer(int sig) { //Timer function

if(sig == SIGALRM) { //If the signal is SIGALRM, the value of counter plus 1, and update
the number displayed by 7-segment display
counter ++;
alarm(1) ; //set the next timer time

printf (“counter : %d \n”, counter) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

int main(void)

{

int i;

printf ("Program is starting ...\n”);

wiringPiSetup() ;

pinMode (dataPin, OUTPUT) ; //set the pin connected to74HC595 for output mode

pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
//set the pin connected to 7-segment display common end to output mode
for (i=0;1<4;i++) {
pinMode (digitPin[i], OUTPUT) ;
digitalWrite(digitPin[i], HIGH);
}
signal (SIGALRM, timer); //configure the timer

alarm(1) ; //set the time of timer to Is
while (1) {

display(counter); //display the number counter
}
return 0;

First, we define the pin of the 74HC595 IC Chip and the 7-Segment Display Common Anode, use character
encoding and a variable "counter"” to enable the counter to be visible on the 7-Segment Display.
ftdefine dataPin 5 //DS Pin of 74HC595(Pinl4)
ftdefine latchPin 4 //ST CP Pin of 74HC595(Pinl12)
#tdefine clockPin 1 //CH CP Pin of 74HC595(Pinl1)
const int digitPin[1={0, 2,3, 12}; //Define the pin of 7-segment display common end

// character 0-9 code of common anode 7-segment display
unsigned char num[]={0xc0, 0xf9, Oxa4, 0xh0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90} ;

int counter = 0; //variable counter, the number will be displayed by 7-segment display

Subfunction selectDigit (int digit) function is used to open one of the 7-Segment Displays while closing the
other 7-Segment Displays, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of a
7-Segment Display.

void selectDigit (int digit) {
digitalWrite(digitPin[0], ((digit&0x08) == 0x08) ? LOW : HIGH) ;
digitalWrite(digitPin[1], ((digit&0x04) == 0x04) ? LOW : HIGH) ;
digitalWrite(digitPin[2], ((digit&0x02) == 0x02) ? LOW : HIGH) ;
digitalWrite(digitPin[3], ((digit&0x01) == 0x01) ? LOW : HIGH) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

Subfunction outData (int8_t data) is used to make the 74HC595 IC Chip output an 8-bit data immediately.

void outData(int8 t data) { // function used to output data for 74HC595
digitalWrite (latchPin, LOW) :
shiftOut (dataPin, clockPin, MSBFIRST, data) :
digitalWrite (latchPin, HIGH) ;

}

Subfunction display (int dec) is used to make a 4-Digit 7-Segment Display a 4-bit integer. First open the
common end of first 7-Segment Display Digit and turn OFF the other three Digits, now it can be used as 1-
Digit 7-Segment Display. The first Digit is used for displaying single digits of "dec”, the second Digit is for tens,
the third for hundreds and fourth for thousands respectively. Each digit will be displayed for a period by using
delay (). The time in this code is very brief, so you will see digits all together. If the time is set long enough,
you will see that every digit is displayed independently.

void display(int dec) { //display function for 7-segment display

selectDigit (0x01) ; //select the first, and display the single digit
outData (num[dec%10]) ;

delay (1) ; //display duration

selectDigit (0x02) ; //Select the second, and display the tens digit
outData (num[dec%100/10]) ;

delay (1) ;

selectDigit (0x04) ; //Select the third, and display the hundreds digit
outData (num[dec%1000/100]) ;

delay (1) ;

selectDigit (0x08) ; //Select the fourth, and display the thousands digit
outData (num[dec%10000/1000]) ;

delay (1) ;

}

Subfunction timer (int sig) is the timer function, which will set an alarm to signal. This function will be executed
once at set time intervals. Accompanied by the execution, “1” will be added as the variable counter and then
reset the time of timer to 1s.

void timer(int sig) { //timer function
if(sig == SIGALRM) { //If the signal is SIGALRM, the value of counter plus 1, and
update the number displayed by 7-segment display
counter ++;

alarm(1); //set the next timer time

support@freenove.com [l

221

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Finally, in the main function, configure the GPIO, and set the timer function.
pinMode (dataPin, OUTPUT) ; //set the pin connected to74HC595 for output mode
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
//set the pin connected to 7-segment display common end to output mode
for (1=0;i<4;i++) |
pinMode (digitPin[i], OUTPUT) ;
digitalWrite (digitPin[i], LOW) ;

1
signal (SIGALRM, timer); //configure the timer

alarm(l) ; //set the time of timer to 1s

In the while loop, make the digital display variable counter value “1". The value will change in function timer
(), so the content displayed by the 7-Segment Display will change accordingly.
while (1) {

display (counter); //display number counter

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com DM} support@freenove.com R

Python Code 18.2.1 StopWatch
This code uses the four step four pat mode to drive the Stepper Motor clockwise and reverse direction.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 16.1.1_SteppingMotor directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/18.2.1_StopWatch
2. Use python command to execute code "StopWatch.py".
python StopWatch.py
After the program is executed, 4-Digit 7-segment start displaying a four-digit number dynamically, and the
will plus 1 in each successive second.
The following is the program code:
import RPi.GPIO as GPIO

import time

import threading

LSBFIRST = 1

MSBFIRST = 2

#tdefine the pins connect to 74HC595

dataPin = 18 #DS Pin of 74HC595(Pinl4)
latchPin = 16 #ST CP Pin of 74HC595(Pinl2)
clockPin = 12 #SH CP Pin of 74HC595(Pinll)

num = (0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)
digitPin = (11, 13, 15, 19) # Define the pin of 7-segment display common end
counter = 0 # Variable counter, the number will be dislayed by 7-segment display
t =0 # define the Timer object
def setup():

GPI0. setmode (GPI0. BOARD) # Number GPIOs by its physical location

GPIO0. setup(dataPin, GPIO.OUT) # Set pin mode to output

GPTO0. setup (latchPin, GPIO. QUT)

GPTO0. setup(clockPin, GPIO. QUT)

for pin in digitPin:

GPIO. setup (pin, GPT0. OUT)

def shiftOut(dPin, cPin, order, val) :
for i in range (0, 8) :
GPIO. output
(cPin, GPIO. LOW) ;
if (order == LSBFIRST) :
GPI0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO. LOW)
GPIO0. output (cPin, GPTO. HIGH)

def outData(data) : #function used to output data for 74HC595
GPI0. output (1atchPin, GPT0. LOW)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com

www.freenove.com

shiftOut (dataPin, clockPin, MSBFIRST, data)

GPIO. output (latchPin, GPI0. HIGH)

def selectDigit(digit): # Open one of the 7-segment display and close the remaining

three,
GPI0. output (digitPin[0], GPI0. LOW
GPI0. output (digitPin[1], GP10. LOW
GPI0. output (digitPin[2], GP10. LOW
GPI0. output (digitPin[3], GP10. LOW

def

def

def

def

display(dec):
outData (0xff)
selectDigit (0x01)
outData (num[dec%10])
time. sleep (0. 003)
outData (0xff)
selectDigit (0x02)
outData (num[dec%100//10])
time. sleep (0. 003)
outData (0xff)
selectDigit (0x04)
outData (num[dec%1000//100])
time. sleep (0. 003)
outData (0xff)
selectDigit (0x08)
outData (num[dec%10000//1000])
time. sleep (0. 003)

timer () :
global counter
global t

t = threading. Timer (1.0, timer)
t. start ()
counter+=1

print (“counter : %d”%counter)
loop () :

global t

global counter

t = threading. Timer (1. 0, timer)
t. start Q)

while True:

display (counter)

destroy() :

f#itimer function

the parameter digit is optional for 1,2,4,8

if ((digit&0x08) == 0x08)
if ((digit&0x04) == 0x04)
if ((digit&0x02) == 0x02)
if ((digit&0x01) == 0x01)

#tdisplay function for 7-segment display

fteliminate residual display

#display duration

fireset time of timer to 1s

#Start timing

#set the timer
Start timing

display the number counter

else GPI0. HIGH)
else GPI0. HIGH)
else GPI0. HIGH)
else GPI0. HIGH)

#Select the first, and display the single digit

Select the second, and display the tens digit

Select the third, and display the hundreds digit

Select the fourth, and display the thousands digit

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

global t

GPTO0. cleanup ()

t. cancel () #tcancel the timer

if name == main

print (" Program is starting...’)

setup ()

try:
Loop()

except KeyboardInterrupt:
destroy ()

First, define the pin of 74HC595 and 7-segment display common end, character encoding and a variable
"counter” to be displayed counter.

dataPin = 18 #DS Pin of 74HC595(Pinl4)
latchPin = 16 #ST CP Pin of 74HC595(Pinl2)
clockPin = 12 #CH_CP Pin of 74HC595(Pinll)

num = (0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)
digitPin = (11, 13, 15, 19) # Define the pin of 7—segment display common end

counter = 0 # Variable counter, the number will be displayed by 7-segment display

Subfunction selectDigit (digit) function is used to open one of the 7-segment display and close the other 7-
segment display, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of 7-segment
display.

def selectDigit(digit): #Open one of the 7-segment display and close the remaining three,
the parameter digit is optional for 1,2,4,8

GPIO. output (digitPin[0], GPTIO. LOW if ((digit&0x08) == 0x08) else GPIO.HIGH)

GPIO. output (digitPin[1], GPTIO. LOW if ((digit&0x04) == 0x04) else GPIO.HIGH)

GPIO. output (digitPin[2], GPIO. LOW if ((digit&0x02) == 0x02) else GPIO.HIGH)

GPIO. output (digitPin[3], GPIO. LOW if ((digit&0x01) == 0x01) else GPIO.HIGH)
Subfunction outData (data) is used to make the 74HC595 output an 8-bit data immediately.
def outData(data) : #function used to output data for 74HC595

GPI0. output (1atchPin, GPI0. LOW)

shiftOut (dataPin, clockPin, MSBFIRST, data)

GPI0. output (latchPin, GPI0. HIGH)
Subfunction display (int dec) is used to make a 4-Digit 7-Segment Display a 4-bit integer. First open the
common end of first 7-Segment Display Digit and turn OFF the other three Digits, now it can be used as 1-
Digit 7-Segment Display. The first Digit is used for displaying single digits of "dec”, the second Digit is for tens,

the third for hundreds and fourth for thousands respectively. Each digit will be displayed for a period by using
delay (). The time in this code is very brief, so you will a mess of Digits. If the time is set long enough, you will
see that every digit is displayed independently.

def display(dec): ftdisplay function for 7-segment display
outData(0xff) #eliminate residual display
selectDigit (0x01) #Select the first, and display the single digit
outData (num[dec%10])
time. sleep(0.003) #display duration

support@freenove.com [l

225

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

outData (0xff)

selectDigit(0x02) #Select the second, and display the tens digit

outData (num[dec%100/10])

time. sleep (0. 003)

outData (0xff)

selectDigit(0x04) #Select the third, and display the hundreds digit

outData (num[dec%1000/100])

time. sleep (0. 003)

outData (0xff)

selectDigit(0x08) #Select the fourth, and display the thousands digit

outData (num[dec%10000/1000])

time. sleep (0. 003)

Subfunction timer () is the timer callback function. When the time is up, this function will be executed.
Accompanied by the execution, the variable counter will be added 1, and then reset the time of timer to 1s.
1s later, the function will be executed again.

def timer(): #timer function

global counter

global t

t = threading. Timer (1.0, timer) freset time of timer to 1s
t. start () #Start timing

counter+=1

print (“counter : %d”%counter)

Subfunction setup(), configure all input output modes for the GPIO pin used.
Finally, in loop function, make the digital tube display variable counter value in the while loop. The value will
change in function timer (), so the content displayed by 7-segment display will change accordingly.
def loop():
global t

global counter

t = threading. Timer (1.0, timer) # set the timer
t. start () #Start timing
while True:

display (counter) #tdisplay the number counter

After the program is executed, press "Ctrl+C", then subfunction destroy() will be executed, and GPIO resources
and timers will be released in this subfunction.

def destroy(): # When ’Ctrl+C is pressed, the function is executed
global t
GPI0. cleanup ()
t. cancel () # cancel the timer

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [V

Chapter 19 74HC595 & LED Matrix

Thus far we have learned how to use the 74HC595 IC Chip to control the Bar Graph LED and the 7-Segment
Display. We will now use 74HC595 IC Chips to control an LED Matrix.

Project 19.1 LED Matrix

In this project, we will use two 74HC595 IC chips to control a monochrome (one color) (8X8) LED Matrix to
make it display both simple graphics and characters.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper x36

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

7T4HC595 x2 8X8 LEDMatrix x1 Resistor 220Q x8

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

228 support@freenove.com www.freenove.com [l

Component knowledge

LED matrix
An LED Matrix is a rectangular display module that consists of a uniform grid of LEDs. The following is an 8X8
monochrome (one color) LED Matrix containing 64 LEDs (8 rows by 8 columns).

16151413121110 9
00000000
00000000
00000000
00000000

123456738

In order to facilitate the operation and reduce the number of ports required to drive this component, the
Positive Poles of the LEDs in each row and Negative Poles of the LEDs in each column are respectively
connected together inside the LED Matrix module, which is called a Common Anode. There is another
arrangement type. Negative Poles of the LEDs in each row and the Positive Poles of the LEDs in each column
are respectively connected together, which is called a Common Cathode.

The LED Matrix that we use in this project is a Common Anode LED Matrix.

Connection mode of Common Anode Connection mode of Common Cathode
13 3410 6111516 13.3.410 6111516

X X

Vo~ 0N ©
PP PP PR PR PR P

PP PP PR PR PR
PP P PP P PP
PP PR PR PR PR
PP PP PR P PR
PP PP PR PR PR

PP PP PR PR PR

WK KK KKK
G~ =00 ©
P P P P Pe PR Pe PR
PP PR PR Pr PR PR PR
P P Pe P Pe P PR PR
PP PR PR Pr PR PR PR
PP PR PR Pe PR Pe PR
PP P Pe Pe Pr PR PR
PP PR PR Pr PR PR PR
XK R KR KR K K

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Here is how a Common Anode LED Matrix works. First, choose 16 ports on RPI board to connect to the 16
ports of LED Matrix. Configure one port in columns for low level, which makes that column the selected port.
Then configure the eight port in the row to display content in the selected column. Add a delay value and
then select the next column that outputs the corresponding content. This kind of operation by column is
called Scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and
each column is represented by one byte.

1 2 3 45 6 7 8
0/0(0|0|0(0O|0O]|O
0|0|1|1|112|12(0/0
0/1/010|0f0|1]0
110{1|0|0]|1]10]|1
1{0/0|0|0|0]|0]|12
1{0/0|1]1/0|0]|1
0/1/0|10|0f0|1]0
0/0(1|1(12(2(0]0

Column Binary Hexadecimal

1 0001 1100 Ox1c

2 0010 0010 0x22

3 0101 0001 0x51

4 0100 0101 0x45

5 0100 0101 0x45

6 0101 0001 0x51

7 0010 0010 0x22

8 0001 1100 Oxlc

To begin, display the first column, then turn off the first column and display the second column. (and so on) ...
turn off the seventh column and display the 8th column, and then start the process over from the first column
again like the control of LED Bar Graph project. The whole process will be repeated rapidly in a loop. Due to
the principle of optical afterglow effect and the vision persistence effect in human sight, we will see a picture
of a smiling face directly rather than individual columns of LEDs turned ON one column at a time (although
in fact this is the reality we cannot perceive).

Scanning rows is another option to display on an LED Matrix (dot matrix grid). Whether scanning by row or
column, 16 GPIO is required. In order to save GPIO ports of control board, two 74HC595 IC Chips are used in
the circuit. Every 74HC595 IC Chip has eight parallel output ports, so two of these have a combined total of
16 ports, which is just enough for our project. The control lines and data lines of the two 74HC595 IC Chips
are not all connected to the RPi, but connect to the Q7 pin of first stage 74HC595 IC Chip and to the data pin
of second IC Chip. The two 74HC595 IC Chips are connected in series, which is the same as using one
"74HC595 IC Chip" with 16 parallel output ports.

support@freenove.com [l

229

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Circuit

In circuit of this project, the power pin of the 74HC595 IC Chip is connected to 3.3V. It can also be connected
to 5V to make LED Matrix brighter.

Schematic diagram
3.3V 3.3V
16[1 16
Y o ol
= S e
Qs stcp f2 latchPi] 2los step |2
Q6 SH.CP k5 clockPin| -1 Q6 SHCP Ko .
Q7 MR |g g1 MR | i
1] GND Q7 ———JT\ 200 1~{ GND Q7
— 74HC595 — 74HC595
X
@@@§§§§§ 33V 5V
13 |3 4 10 |6 11 15 |16 J-ﬁ ggﬁ‘; ;))288 8
Wﬁ(X x| X A A —L1GPIO4 GPIO18 é
dataPin GPIO17 GPIO23
[row2 —t v X A X latchPin GPI027 GPI1024 18
GPI1022 GPI1025 |-22—
@%%%%%%%% 191Mos! CEol24
o 2 2] 2 A 2] A h{uiso CF118-
[Fowa P— SCLK SCLO
-2L1SDAD GPI012 |32~
@‘% A A X X X xR 29 1GPIO5 GPI016 {38~
-211GPI06 GPI020|-38—
@—”7{ A X X x A X —3-3-gPI813 GPI021 40—
-35.1GpI019
@2% 2 2 X % Sy ~31GPI026 Raspberry Pi
GPIO Extension Shield
5% ﬁ(ﬁ(ﬁ(ﬁ(ﬁ(% ﬁ(XGNDI !

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [eHl

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Second stage L
74HC595: B
J_\

.
.

LR
=
o ———
» =
. ==
L S]
— °
o
.
L]
L]
L)
.o
LR
* o cmmmm
LR
* o cmmmm
* * cummm
* o o
L
L
L ————
First stage dpirgrdid|
74HC595: A i el
j_ * o cunmmm
* » CEEEE——
© * o » o e | =
. L
. ® o 00
. s o 0 LR
(*1201d0 ano* L0
> 12 #0201dD 9z01d9® CRCHN
) 14 #9101d 6101d9* CRCHEN R
o [*aND £101d9* CRCHE KT
o 1197101d9 901d9* CRCHN RS
LI Ll *IND COIdO* LAJ LR
(%010 ovase B0
L) *31) ((PL) > commmmD o
o ER) NOse L o
° . L)
LA o
LA
.
o *OND £701d9*
be #3101dD £L0Id9* |3
oo 00Xy .
oo *0axL .
° *aNO .
o
oA B

PIaIys uoisualx3 OIdO Id Aieqdsey

HRERH
e P G W Yo o 20 2 2
a0 2 2 A ad o 2
i Yo i o 2 A K A
s o A A A M A
samma 222 20 2 20 2 2
TAHCE55 P 05 W So L 2 A o] A
e w03 3] 2 0 ad
s 0 s X X X X X X

12345678

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Code

Two 74HC595 IC Chips are used in this project, one for controlling the LED Matrix’s columns and the other
for controlling the rows. According to the circuit connection, row data should be sent first, then column data.
The following code will make the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

C Code 19.1.1 LEDMatrix

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 19.1.1_LEDMatrix directory of C language.

cd ~/Freenove_Kit/Code/C_Code/19.1.1_LEDMatrix

2. Use following command to compile “LEDMatrix.c” and generate executable file “LEDMatrix”.

gcc LEDMatrix.c —o LEDMatrix —-lwiringPi

3. Then run the generated file “LEDMatrix”.

sudo ./LEDMatrix

After the program is executed, the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

The following is the program code:

1 #include <wiringPi. h>

2 #include <stdio.h>

3 #include <wiringShift.h>

4

5 #define dataPin 0 //DS Pin of 74HC595(Pinl4)

6 #tdefine latchPin 2 //ST CP Pin of 74HC595(Pinl2)

7 fidefine clockPin 3 //SH _CP Pin of 74HC595(Pinll)

3 // data of smile face

9 unsigned char pic[]={0x1lc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Ox1lc} ;
10 unsigned char datall={ // data of "0-F”

11 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ~ ”
12 0x00, 0x00, Ox3E, 0x41, 0x41, 0x3E, 0x00, 0x00, // “0”
13 0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, // "1”
14 0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2”
15 0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // ”3”
16 0x00, 0x00, O0xOE, 0x32, Ox7F, 0x02, 0x00, 0x00, // "4
17 0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // ”5”
18 0x00, 0x00, O0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, // "6”
19 0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // "7”
20 0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // ”8”
21 0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, // "9”
22 0x00, 0x00, O0x3F, 0x44, 0x44, O0x3F, 0x00, 0x00, // "A”
23 0x00, 0x00, Ox7F, 0x49, 0x49, 0x36, 0x00, 0x00, // “B”
24 0x00, 0x00, O0x3E, 0x41, 0x41, 0x22, 0x00, 0x00, // "C”
25 0x00, 0x00, Ox7F, 0x41, 0x41, 0x3E, 0x00, 0x00, // “D”

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com DM} support@freenove.com JRARK]

0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00, // "E”
0x00, 0x00, Ox7F, 0x48, 0x48, 0x40, 0x00, 0x00, // "F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ~”
b
void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 8; i++){
digitalWrite (cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {//if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
}
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

}

int main(void)

{

int i, j, k;

unsigned char x;

printf ("Program is starting ...\n”);

wiringPiSetup() ;

pinMode (dataPin, OUTPUT) ;

pinMode (1atchPin, OUTPUT) ;

pinMode (clockPin, OUTPUT) ;

while (1) {

for (j=0; j<500; j++) { //Repeat enough times to display the smiling face a period of

time

x=0x80;
for (i=0;i<8; i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, pic[i]);// first shift data of line
information to the first stage 74HC959
_shiftOut (dataPin, clockPin, MSBFIRST, ~x) ;//then shift data of column
information to the second stage 74HC959

digitalWrite (latchPin, HIGH) ;//Output data of two stage 74HC595 at the same

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

time
x>=1; //display the next column
delay (1) ;

}
for (k=0;k<sizeof (data)-8;k++) { //sizeof (data) total number of “0-F” columns
for (j=0; j<20; j++) { //times of repeated displaying LEDMatrix in every frame, the
bigger the “j” , the longer the display time
x=0x80; //Set the column information to start from the first column
for (i=k;i<8+k;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, datali]) ;
_shiftOut (dataPin, clockPin, MSBFIRST, ~x) ;
digitalWrite (latchPin, HIGH) ;
x>=1;
delay(1);

}

return O;

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left
to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display
time.

for (j=0; j<500; j++) {// Repeat enough times to display the smiling face a period
of time

x=0x80;

for (i=0;1<8;i++) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) ;
shiftOut (dataPin, clockPin, MSBFIRST, “x) ;
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay (1) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns.
Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on--138-144 column in
consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times
and the more repetitions, the longer the single frame display will be and the slower the scrolling movement.
for (k=0;k<{sizeof (data) -8;k++) { //sizeof(data) total number of “0-F” columns
for (j=0; j<20; j++) {// times of repeated displaying LEDMatrix in every frame,

&«

the bigger the “j” , the longer the display time
x=0x80; // Set the column information to start from the first column
for (i=k; i<8+k;i+t) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, datali]) ;
shiftOut (dataPin, clockPin, MSBFIRST, “x) ;
digitalWrite (latchPin, HIGH) :
x>>=1;
delay (1) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Python Code 19.1.1 LEDMatrix

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 19.1.1_LEDMatrix directory of Python language.

2. Use Python command to execute Python code “LEDMatrix.py”.
After the program is executed, the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.
The following is the program code:

import RPi.GPIO as GPIO

import time

LSBFIRST =

MSBFIRST = 2

ftidefine the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pinl4)
latchPin = 13 #ST CP Pin of 74HC595(Pinl12)
clockPin = 15 #SH CP Pin of 74HC595(Pinl11)

pic = [0xlc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Oxlc]# data of smiling face
data = [#data of "0-F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x41, 0x41, O0x3E, 0x00, 0x00,
0x00, 0x00, 0x21, O0x7F, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00,
0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, OxOE, 0x32, 0x7F, 0x02, 0x00, 0x00,
0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x49, 0x49, 0x26, 0x00, 0x00,
0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00,
0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, 0x32, 0x49, 0x49, O0x3E, 0x00, 0x00,
0x00, 0x00, Ox3F, 0x44, 0x44, O0x3F, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x41, 0x41, 0x22, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x41, 0x41, Ox3E, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00,
0x00, 0x00, OxT7F, 0x48, 0x48, 0x40, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

H O H#H H#+ O H# H O H = H O H O H H O O H O H O H O H

def setup():
GPI0. setmode (GPT0. BOARD) # Number GPIOs by its physical location
GPI0. setup(dataPin, GPI0.OUT)
GPT0. setup(latchPin, GPIO. OUT)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com I

GPTO0. setup (clockPin, GPIO.OUT)

def shiftOut(dPin, cPin, order, val) :
for i in range (0, 8) :
GPTO0. output (cPin, GPTO. LOW) ;
if(order == LSBFIRST) :
GPI0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO. LOW)
GPTO0. output (cPin, GPTO. HIGH) ;

def loop():
while True:
for j in range (0, 500) :# Repeat enough times to display the smiling face a period
of time
x=0x80
for i in range (0, 8) :
GPTO0. output (latchPin, GPTO. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) #first shift data of line
information to first stage 74HC959

shiftOut (dataPin, clockPin, MSBFIRST, “x) #then shift data of column
information to second stage 74HC959
GPIO. output (latchPin, GPIO. HIGH)# Output data of two stage 74HC595 at the
same time
time. sleep(0.001)# display the next column
x>>=1
for k in range (0, len(data)-8) :#len(data) total number of “0-F” columns
for j in range(0, 20) :# times of repeated displaying LEDMatrix in every frame,
the bigger the ”j”, the longer the display time.
x=0x80 # Set the column information to start from the first column
for i in range (k, k+8) :
GPI0. output (latchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, datal[il])
shiftOut (dataPin, clockPin, MSBFIRST, ~x)
GPI0. output (latchPin, GPI0. HIGH)
time. sleep (0. 001)

x>>=1
def destroy():
GPI0. cleanup ()
if name == main :
print (Program is starting...’)
setup ()
try:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

loop()
except KeyboardInterrupt:

destroy ()

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left
to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display
time.

for j in range(0, 500) :# Repeat enough times to display the smiling face a period
of time
x=0x80
for i in range (0, 8):
GPTO0. output (latchPin, GPTO. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) #first shift data of line
information to first stage 74HC959
shiftOut (dataPin, clockPin, MSBFIRST, “x) #then shift data of column
information to first stage 74HC959

GPIO. output (latchPin, GPIO. HIGH)# Output data of two stage 74HC595 at the
same time.

time. sleep (0. 001)# display the next column

x>>=1
The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns.
Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on--138-144 column in
consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times
and the more repetitions, the longer the single frame display will be and the slower the scrolling movement.

for k in range (0, len(data)-8) :#len(data) total number of “0-F” columns

for j in range(0, 20) :# times of repeated displaying LEDMatrix in every frame,
the bigger the “j” , the longer the display time
x=0x80 # Set the column information to start from the first column
for i in range(k, k+8):
GPIO. output (latchPin, GPTO0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, data[i])
shiftOut (dataPin, clockPin, MSBFIRST, ~x)
GPIO0. output (latchPin, GPI0. HIGH)
time. sleep (0. 001)

x>>=1

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

Chapter 20 LCD1602

In this chapter, we will learn about the LCD1602 Display Screen,

Project 20.1 12C LCD1602

There are LCD1602 display screen and the 12C LCD. We will introduce both of them in this chapter. But what
we use in this project is an 12C LCD1602 display screen. The LCD1602 Display Screen can display 2 lines of
characters in 16 columns. It is capable of displaying numbers, letters, symbols, ASCIl code and so on. As shown
below is a monochrome LCD1602 Display Screen along with its circuit pin diagram

O—AMSLNO
— AN LNON OO — ———

VDD
DBO
DB1
DB2
DB3
DB4
DB5
DB6
DB7
LED+
LED-
LCD1602

2 S
v o wm
S>S>Sxxc2w

FlN

e <] o]

wA
R
2
10
ikl
12
13
14
15
16

I2C LCD1602 Display Screen integrates a 12C interface, which connects the serial-input & parallel-output
module to the LCD1602 Display Screen. This allows us to only use 4 lines to operate the LCD1602.

-1 GND

2lycc |(mummm
3lcpa ((mmmmm
4 scL ==

12C LCD1602 Module

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default I12C address is
0x27(0x3F). You can also view the RPI bus on your I2C device address through command "i2cdetect -y 1"
(refer to the "configuration [2C" section below).

support@freenove.com [l

239

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Below is the PCF8574 chip pin diagram and its module pin diagram:

PCF8574 chip pin diagram:

A0 [1] U

A1 [2]

e [3

Po (4] pcresva
PCF8574A

P1 [5]
P2 6]
P3 [7]
Vss [2]

[16] Voo
[15] spa
14] scL
13] INT
12] P7
[11] Ps
[10] P5
(9] P4

PCF8574 module pin diagram

BlazBRIE[Blele [~vlo ol oo |~

GND

[TT1

PCF8574

PCF8574 module pins and LCD1602 pins correspond to each other and connected to each other:

GNDf—
VCC|—
SDA}—
SCL|—

PCF8574

volP—3{ vo

vssH—| GND
vbp}2—2] vbp
Rs4-4| po

rRWE—2] p1

E[6-&|po
5)=o] A INTSS
pe1}8-8{ ne

pe2l2 9] ne

LED-[618] GnD

pe7[1414{ p7
LCD1602

pe3[1210 NG
pe4fL 1 py
pB5[1212] ps
pee[3-13{ pg
LED+ 1515 p3

Because of this, as stated earlier, we only need 4 pins to control thel6 pins of the LCD1602 Display Screen

through the 12C interface.

In this project, we will use the 12C LCD1602 to display some static characters and dynamic variables.

Component List

Breadboard x1

Raspberry Pi (with 40 GPIO) x1
GPIO Extension Board & Ribbon Cable x1

Jumper Wire x4

—-a--. 44444444

[2C LCD1602 Module x1

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EZXE

Circuit

Note that the power supply for 12C LCD1602 in this circuit is 5V.

Schematic diagram

GND J
SDA SDA1 TXDO
scL f4- SiscL1 RXDO 1O
—L1GPIO4 GPIO18}12
12C LCD1602 Module -—U—‘GP|O17 GP1023 6
131GPI027 GPI1024}-18
121Gpi022 GPI1025}22
-19.1Mos| CEO |24~
21Imiso CE1}26
231sCLK SCLO 28—
271SDA0 GPIO12}32—
291GPI0O5 GPIO16}35—
S11GPios GP1020 38—
331GPI013 GP1021}40
Jj%eplow
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com
NOTE: It is necessary to configure 12C and install Smbus first (see chapter 7 for details)

® o 0o 00 0 00
® o 0o 000 00
® o 0o 0 00 00
® o 0o 0 0 0 0 0
® e 0o 000 00

® o 0o 0 00 0 0

® © 0 00 000 000000 0 00
® © 0 00 000000000 0 00
© © 0 0 0 0 0 0 00 0 0 0 00000 0 0 0 0 0 0
® © 0 0 0000 00 0000 0 00
® © 0 0 9 9 5 0 PSS S S S S PSS YYD

. ©
-
- <
— (%]
- c
-
-
- c
- B

2
- x
- w
B o
= o
Ly O
- o
.
- =
] ©
] o
= Q
- B2
- B
- o

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

< support@freenove.com www.freenove.com [l

Code

This code will have your RPi’s CPU temperature and System Time Displayed on the LCD1602.

C Code 20.1.1 12CLCD1602

If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, please continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 20.1.1_12CLCD1602 directory of C code.

cd ~/Freenove_Kit/Code/C_Code/20.1.1_I2CLCD1602

2. Use following command to compile “I2CLCD1602.c” and generate executable file “I2CLCD1602”".

gcc I2CLCD1602.c —o I2CLCD1602 -lwiringPi -lwiringPiDev

3. Then run the generated file “I2CLCD1602".

sudo ./ I2CLCD16602

After the program is executed, the LCD1602 Screen will display your RPi’s CPU Temperature and System Time.
NOTE: After the program is executed, if you cannot see anything on the display or the display is not
clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen
can display the Time and Temperature clearly.

The following is the program code:

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <wiringPi.h>

4 #include <wiringPil2C.h>

5 #include <pcf8574.h>

6 #include <lecd.h>

7 #include <time.h>

8

9 int pcf8574_address = 0x27; // PCF8574T:0x27, PCF8574AT:0x3F
10 #define BASE 64 // BASE any number above 64

11 //Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin
12 #tdefine RS BASE+0

13 ftdefine RW BASE+1

14 #tdefine EN BASE+2

15 #tdefine LED BASE+3

16 #tdefine D4 BASE+4

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com LX)

#define D5 BASE+5
#define D6 BASE+6
#define D7 BASE+T7

int lcdhd;// used to handle LCD
void printCPUTemperature () {// sub function used to print CPU temperature
FILE *fp;
char str_temp[15];
float CPU temp;
// CPU temperature data is stored in this directory.
fp=fopen(”/sys/class/thermal/thermal zone0/temp”, "r”);
fgets (str_temp, 15, fp) ; // read file temp
CPU_temp = atof (str_temp)/1000.0; // convert to Celsius degrees

printf ("CPU" s temperature : %. 2f \n”, CPU_temp) ;

lcdPosition(1edhd, 0, 0) ; // set the LCD cursor position to (0, 0)
lcdPrintf (1edhd, “CPU:%. 2£C”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

}
void printDataTime() {//used to print system time
time t rawtime;
struct tm *timeinfo;
time (&rawtime) ;// get system time
timeinfo = localtime (&rawtime);//convert to local time
printf("%s \n”, asctime (timeinfo)) ;
lcdPosition(ledhd, 0, 1) ;// set the LCD cursor position to (0, 1)

lcdPrintf (1cdhd, “Time:%02d:%02d:%02d”, timeinfo—>tm_hour, timeinfo—>tm min, timeinfo—>tm_sec) ;
//Display system time on LCD
}
int detectI2C(int addr) { //Used to detect i2c address of LCD
int fd = wiringPilI2CSetup (addr);
if (fd < 0){
printf ("Error address : Ox%x \n”, addr) ;
return 0 ;
}
elsef
if(wiringPil2CWrite (_fd, 0) < 0) {

printf ("Not found device in address Ox%x \n”, addr) ;

return 0;

}

else
printf ("Found device in address Ox%x \n”, addr);
return 1 ;

}

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com www.freenove.com [l

}
int main(void) {
int i;
printf ("Program is starting ...\n”);
wiringPiSetup() ;
if (detectI2C(0x27)) {
pcf8574 address = 0x27;
Jelse if (detectI2C(0x3F)) {
pcf8574 address = 0x3F;
Jelse
printf ("No correct 12C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);
return —1;
}
pcf8574Setup (BASE, pcf8574 address);//initialize PCF8574
for (i=0;1<8;i++) {

pinMode (BASE+i, OUTPUT) ; //set PCF8574 port to output mode
}
digitalWrite (LED, HIGH) ; //turn on LCD backlight
digitalWrite (RW, LOW) ; //allow writing to LCD

ledhd = ledInit (2, 16, 4, RS, EN, D4, D5, D6, D7,0,0,0,0) ;// initialize LCD and return “handle”
used to handle LCD

if(lednd == -1) {
printf(“lcdInit failed !7);
return 1;

}

while (1) {
printCPUTemperature () ;//print CPU temperature
printDataTime () ; // print system time
delay (1000) ;

}

return 0;

}
From the code, we can see that the PCF8591 and the PCF8574 have many similarities in using the 12C interface
to expand the GPIO RPI.
First, define the 12C address of the PCF8574 and the Extension of the GPIO pin, which is connected to the
GPIO pin of the LCD1602. LCD1602 has two different i2c addresses. Set 0x27 as default.

int pcf8574 address = 0x27; // PCF8574T:0x27, PCF8574AT:0x3F

#define BASE 64 // BASE any number above 64

//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin.

ftdefine RS BASE+0

ftdefine RW BASE+1

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

#define EN BASE+2
#define LED BASE+3
#idefine D4 BASE+4
#define D5 BASE+5
#define D6 BASE+6
#define D7 BASE+T7

Then, in main function, initialize the PCF8574, set all the pins to output mode, and turn ON the LCD1602
backlight (without the backlight the Display is difficult to read).

pcf8574Setup (BASE, pcf8574 address) ;// initialize PCF8574
for (i=0;i<8;i++) {
pinMode (BASE+i, OUTPUT) ; // set PCF8574 port to output mode

}

digitalWrite (LED, HIGH) ; // turn on LCD backlight

Then use Icdinit() to initialize LCD1602 and set the RW pin of LCD1602 to O (can be written) according to
requirements of this function. The return value of the function called "Handle" is used to handle LCD1602".

. lednd = ledInit (2, 16, 4, RS, EN, D4, D5, D6, D7, 0,0,0,0) : // initialize LCD and return

“handle” wused to handle LCD
Details about IcdInit():

This is the main initialization function and must be executd first before you use any other LCD functions.
Rows and cols are the rows and columns of the Display (e.g. 2, 16 or 4, 20). Bits is the number of how wide
the number of bits is on the interface (4 or 8). The rs and strb represent the pin numbers of the Display’s
RS pin and Strobe (E) pin. The parameters d0 through d7 are the pin numbers of the 8 data pins connected
from the RPi to the display. Only the first 4 are used if you are running the display in 4-bit mode.

The return value is the ‘handle’ to be used for all subsequent calls to the lcd library when dealing with that
LCD, or -1 to indicate a fault (usually incorrect parameter)

For more details about LCD Library, please refer to: https://projects.drogon.net/raspberry-pi/wiringpi/lcd-

library/
In the next “while”, two subfunctions are called to display the RPi’'s CPU Temperature and the SystemTime.
First look at subfunction printCPUTemperature(). The CPU temperature data
"/sys/class/thermal /thermal zone0O/temp” file. We need to read the contents of this file, which converts it to
temperature value stored in variable CPU_temp and uses lcdPrintf() to display it on LCD.

is stored in the

void printCPUTemperature () {//subfunction used to print CPU temperature

FILE *fp;

char str temp[15];

float CPU_temp;

// CPU temperature data is stored in this directory
”Y

fp=fopen(”/sys/class/thermal/thermal zone0O/temp”, "1

fgets(str temp, 15, fp) ; // read file temp

CPU temp = atof(str temp)/1000.0;

printf ("CPU" s temperature

- % 2f \n”, CPU_temp) ;

// convert to Celsius degrees

support@freenove.com [l

245

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/

4 support@freenove.com www.freenove.com [l

ledPosition (1edhd, 0, 0) : // set the LCD cursor position to (0,0)
ledPrintf (1edhd, “CPU:%. 2£C”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

}
Details about IcdPosition() and IcdPrintf():

Set the position of the cursor for subsequent text entry.

These output a single ASCII character, a string or a formatted string using the usual print formatting
commands to display individual characters (it is how you are able to see characters on your computer
monitor).

Next is subfunction printDataTime() used to display System Time. First, it gets the Standard Time and stores
it into variable Rawtime, and then converts it to the Local Time and stores it into timeinfo, and finally displays
the Time information on the LCD1602 Display.

void printDataTime () {//used to print system time

time t rawtime;

struct tm *timeinfo;

time (&rawtime) ;// get system time

timeinfo = localtime (&rawtime);// convert to local time

printf ("%s \n”, asctime (timeinfo)) ;

lcdPosition(lcdhd, 0,1);// set the LCD cursor position to (0, 1)

lcdPrintf (1cdhd, “Time:%d:%d:%d”, timeinfo—>tm_hour, timeinfo—>tm min, timeinfo—>tm_sec) ;
//Display system time on LCD

}

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Python Code 20.1.1 12CLCD1602

If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 20.1.1_ 12CLCD1602 directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/20.1.1_I2CLCD1602

2. Use Python command to execute Python code “I2CLCD1602.py".

python I2CLCD1602.py

After the program is executed, the LCD1602 Screen will display your RPi's CPU Temperature and System Time.
NOTE: After the program is executed, if you cannot see anything on the display or the display is not
clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen

can display the Time and Temperature clearly.

The following is the program code:

1 from PCF8574 import PCF8574 GPIO

2 from Adafruit LCD1602 import Adafruit CharLCD

3

4 from time import sleep, strftime

5 from datetime import datetime

6

7 def get cpu temp(): # get CPU temperature and store it into file
8 ”/sys/class/thermal/thermal zoneO/temp”

9 tmp = open(/sys/class/thermal/thermal zoneO/temp’)
10 cpu = tmp. read()

11 tmp. close ()

12 return ~ {:.2f} . format(float(cpu)/1000) + C’

13

14 def get time now(): # get system time

15 return datetime.now(). strftime(%H: %M: %S’)

16

17 def loop():

18 mep. output (3, 1) # turn on LCD backlight

19 lcd. begin (16, 2) # set number of LCD lines and columns
20 while (True) :

21 #tlcd. clear ()

support@freenove.com [l

247

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

lcd. setCursor (0,0) # set cursor position

lcd. message("CPU: ~ + get cpu temp()+ \n')# display CPU temperature
lcd. message(get time now()) # display the time

sleep (1)

def destroy():
lcd. clear ()

PCF8574 address = 0x27 # [2C address of the PCF8574 chip.
PCF8574A address = 0x3F # [2C address of the PCE8574A chip.
Create PCF8574 GPIO adapter.
try:
mcp = PCF8574 GPIO(PCF8574 address)
except:
try:
mep = PCF8574 GPIO(PCF8574A address)
except:
print (12C Address Error !7)
exit (1)
Create LCD, passing in MCP GPIO adapter.
led = Adafruit CharLCD(pin rs=0, pin e=2, pins db=[4, 5,6, 7], GPIO=mcp)
if name == main ’
print (Program is starting ...)
try:
Loop ()
except KeyboardInterrupt:
destroy()

Two modules are used in the code, PCF8574.py and Adafruit_LCD1602.py. These two documents and the
code files are stored in the same directory, and neither of them is dispensable. Please DO NOT DELETE THEM!
PCF8574.py is used to provide 12C communication mode and operation method of some of the ports for the
RPi and PCF8574 IC Chip. Adafruit module Adafruit_LCD1602.py is used to provide some functional operation
method for the LCD1602 Display.
In the code, first get the object used to operate the PCF8574's port, then get the object used to operate the
LCD1602.

address = 0x27 # 12C address of the PCF8574 chip.

Create PCF8574 GPIO adapter.

mep = PCF8574 GPIO(address)

Create LCD, passing in MCP GPIO adapter.

led = Adafruit CharLCD(pin rs=0, pin e=2, pins db=[4,5,6, 7], GPIO=mcp)
According to the circuit connection, port 3 of PCF8574 is connected to the positive pole of the LCD1602
Display’s backlight. Then in the loop () function, use of mcp.output (3,1) to turn the LCD1602 Display’s
backlight ON and then set the number of LCD lines and columns.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

def loop():
mep. output (3, 1) # turn on the LCD backlight
lcd. begin (16, 2) # set number of LCD lines and columns

In the next while loop, set the cursor position, and display the CPU temperature and time.

while(True) :
#tlcd. clear ()
lcd. setCursor(0,0) # set cursor position
lcd. message(" CPU: *~ + get cpu temp()+ \n")# display CPU temperature
lcd. message(get time now()) # display the time
sleep (1)

CPU temperature is stored in file “/sys/class/thermal/thermal_zoneO/temp”. Open the file and read content of
the file, and then convert it to Celsius degrees and return. Subfunction used to get CPU temperature is shown
below:

def get cpu tempQ): # get CPU temperature and store it into file
“/sys/class/thermal/thermal zone(O/temp”
tmp = open(’ /sys/class/thermal/thermal zoneO/temp’)
cpu = tmp. read()
tmp. close ()
return ' [:.2f} . format(float(cpu)/1000) + C(’
Subfunction used to get time:

def get time now(): # get the time
return datetime.now(). strftime(%H : %M: %S’)
Details about PCF8574.py and Adafruit_LCD1602.py:

This module provides two classes PCF8574_12C and PCF8574_GPIO.
Class PCF8574_12C: provides reading and writing method for PCF8574.
Class PCF8574_GPIO: provides a standardized set of GPIO functions.
More information can be viewed through opening PCF8574.py.
Adafruit_LCD1602 Module
 Module Adafruit LCD1602
This module provides the basic operation method of LCD1602, including class Adafruit_CharLCD. Some
member functions are described as follows:
def begin(self, cols, lines): set the number of lines and columns of the screen.
def clear(self): clear the screen
def setCursor(self, col, row): set the cursor position
def message(self, text): display contents
More information can be viewed through opening Adafruit_CharLCD.py.

support@freenove.com [l

249

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Chapter 21 Hygrothermograph DHT11

In this chapter, we will learn about a commonly used sensor called a Hygrothermograph DHT11.

Project 21.1 Hygrothermograph

Hygrothermograph is an important tool in our lives to give us data on the temperature and humidity in our
environment. In this project, we will use the RPi to read Temperature and Humidity data of the DHT11 Module.

Component List

Raspberry Pi (with 40 GPIO) x1 DHT11 x1 Resistor 10kQ x1
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x4

—-a-. -

Component knowledge

The Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output
digital signal has been calibrated by its manufacturer.

VCC CnNw»
SDA

NC

GND

1234 DHT11

After being powered up, it will initialize in 1 second. Its operating voltage is within the range of 3.3V-5.5V.
The SDA pin is a data pin, which is used to communicate with other devices.

The NC pin (Not Connected Pin) are a type of pin found on various integrated circuit packages. Those pins
have no functional purpose to the outside circuit (but may have an unknown functionality during
manufacture and test). Those pins should not be connected to any of the circuit connections.

oo b

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [2K

Circuit

Schematic diagram

3.3V 5V
—3.1SDA1 TXDO |8~
o eSO RXDO 1O
cmw vee LIGPI04 GPIO18}-12~
SDA |2 111GPIO17 GPI023-16
NC |- A31GpPi027 GPI024 |18
GND A51GPI1022 GPI025 |22
191moslI CEO 24—
DHT11 21IMiso CE1 126
il 5 231scLK SCLO 28~
= 2L4spao GPIO12}32—
291GPI05 GPI016 36~
211GPIO6 GPI1020 38
331GPIO13 GP1021 40
32.1GPIO19
B GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

® o0 00 0 0 00
® o 0 00 0 0 00
® 0 0 0 0 0 0 0o
® o 0 0 0 0 0 00
® o 0 0 0 00 0 0

& o
. 2
- £
- K
-i c
- B
= I
- R
- [

2
- x
- w
& o
- ™
Ly O
R
-
- e
- B
- 2
= o
- B
- ©
]

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

The code is used to read the temperature and humidity data of DHT11, and display them.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 21.1.1_DHT11 directory of C code.

cd ~/Freenove_Kit/Code/C_Code/21.1.1_DHT11

2. The code used in this project contains a custom header file. Use the following command to compile the
code DHT11l.cpp and DHT.cpp and generate executable file DHT11. The custom header file will be
compiled at the same time.

gcc DHT.cpp DHT1l.cpp -o DHT11l -lwiringPi

3. Run the generated file "DHT11".

sudo ./DHT11

After the program is executed, the Terminal window will display the current total number of read times, the

read state, as well as temperature and humidity values as is shown below:

The following is the program code:

1 #include <wiringPi. h>

2 #include <stdio.h>

3 #include <stdint.h>

4 #include “DHT. hpp”

5

(3} fidefine DHT11 Pin O //define the pin of sensor
7

8 int main() {

9 DHT dht; //create a DHT class object

10 int chk, counts; //chk:read the return value of sensor; sumCnt:times of reading
11 sensor

12

13 printf ("Program is starting ...\n”);

14

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

while (1) {
counts++; //counting number of reading times
printf ("Measurement counts : %d \n”, counts);
for (int i =0; i < 15; i+4){
chk = dht. readDHT11 (DHT11 Pin); //read DHT11 and get a return value. Then
determine whether data read is normal according to the return value
if (chk == DHTLIB_OK) {
printf ("DHT11, OK! \n”);
break;
}
delay (100) ;
}
printf ("Humidity is % 2f %%, \t Temperature is %. 2f *C\n\n”, dht. humidity,
dht. temperature) ;
delay (2000) ;
}

return 1;

}

In this project code, we use a custom library file "DHT.hpp". It is located in the same directory with the program
files "DHT11.cpp” and "DHT.cpp”, and methods for reading DHT sensor are provided in the library file. By
using this library, we can easily read the DHT Sensor. First, we create a DHT class object in the code.

[oHr dnt;

Then in the "while" loop, use chk = dht.readDHT11 (DHT11_Pin) to read the DHT11, and determine whether
the data read is normal according to the return value "chk". If the value is OK, end for loop and move on.
Otherwise, try 15 times in total. Then use variable counts to record number of times to read.

while (1) {

counts++; //counting number of reading times

printf ("Measurement counts : %d \n”, counts);
for (int i = 0; i < 15; i++) {
chk = dht. readDHT11 (DHT11 Pin); //read DHT11 and get a return value. Then
determine whether data read is normal according to the return value
if (chk == DHTLIB OK) {
printf ("DHT11, OK! \n”);
break;
1
delay (100) ;
}
printf ("Humidity is % 2f %%, \t Temperature is %. 2f *C\n\n”, dht. humidity,
dht. temperature) ;
delay (2000) ;

Finally display the results:
- printf ("Humidity is % 2f %%, \t Temperature is %. 2f *C\n\n”, dht. humidity, dht. temperature) ; ‘

support@freenove.com [l

253

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Library file "DHT.hpp" contains a DHT class and this public member function int readDHT11 (int pin) is used

to read sensor DHT11 and store the temperature and humidity data read to member variables double

humidity and temperature. The implementation method of the function is included in the file "DHT.cpp”.
fidefine DHT H

finclude <wiringPi.h>
finclude <stdio.h>
finclude <stdint.h>

////read return flag of sensor
#define DHTLIB_OK 0
#define DHTLIB_ERROR_CHECKSUM -1
#define DHTLIB_ERROR_TIMEOUT -2
#define DHTLIB_INVALID VALUE -999

#define DHTLIB_DHT11_WAKEUP 20

#define DHTLIB_DHT WAKEUP 1
#define DHTLIB_TIMEOUT 100
class DHT{
public:
DHT () ;
double humidity, temperature; //use to store temperature and humidity data read
int readDHT110nce(int pin); //read DHT11
int readDHT11 (int pin); //read DHT11
private:
uint8 t bits[5]; //Buffer to receiver data
int readSensor(int pin, int wakeupDelay) ; //

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via:

1. Use cd command to enter 21.1.1_DHT11 directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/21.1.1_DHT11

2. Use Python command to execute code "DHT11.py".

python DHT11.py

After the program is executed, the Terminal window will display the current total number of read times, the

read state, as well as temperature and humidity values as is shown below:

The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3 import Freenove DHT as DHT

4 DHTPin = 11 #tdefine the pin of DHTI1I

5

6 def loop():

7 dht = DHT. DHT (DHTPin) #create a DHT class object

8 counts = 0 # Measurement counts

9 while (True) :

10 counts += 1

11 print ("Measurement counts: ”, counts)

12 for i in range (0, 15):

13 chk = dht. readDHT11 () #tread DHT11 and get a return value. Then determine
14 whether data read is normal according to the return value.

15 if (chk is dht.DHTLIB OK) : firead DHT11 and get a return value. Then determine
16 whether data read is normal according to the return value.

17 print ("DHT11, OK!”)

18 break

19 time. sleep (0. 1)

20 print ("Humidity : % 2f, \t Temperature : % 2f \n"%(dht. humidity, dht. temperature))
21 time. sleep(2)

22

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

23 if name ==’ main

24 print (Program is starting ...)
25 try:

26 loop ()

27 except KeyboardInterrupt:

28 GPIO0. cleanup ()

29 exit()

In this project code, we use a module "Freenove_DHT.py", which provides the method of reading the DHT
Sensor. It is located in the same directory with program files "DHT11.py". By using this library, we can easily
read the DHT Sensor. First, we create a DHT class object in the code.
| | dht = DHT.DHT(DHTPin) #create a DHT class object
Then in the "while" loop, use chk = dht.readDHT11 (DHT11Pin) to read the DHT11, and determine whether
the data read is normal according to the return value "chk”. Then use variable sumCnt to record the number

of times read.
while (True) :

counts += 1
print ("Measurement counts: ”, counts)
for i in range(0, 15):
chk = dht. readDHT11 () #iread DHT11 and get a return value. Then determine
whether data read is normal according to the return value.
if (chk is dht.DHTLIB OK) : #iread DHT11 and get a return value. Then determine
whether data read is normal according to the return value.
print (“"DHT11, OK!”)
break
time. sleep (0. 1)
print ("Humidity : % 2f, \t Temperature : % 2f \n”%(dht. humidity, dht. temperature))

time. sleep(2)

Finally display the results:

‘ ‘ print ("Humidity : % 2f, \t Temperature : % 2f \n"%(dht. humidity, dht. temperature))

Module "Freenove_DHT.py" contains a DHT class. The class function of the def readDHT11 (pin) is used to
read the DHT11 Sensor and store the temperature and humidity data read to member variables humidity
and temperature.

This is a Python module for reading the temperature and humidity data of the DHT Sensor. Partial
functions and variables are described as follows:

Variable humidity: store humidity data read from sensor

Variable temperature: store temperature data read from sensor

def (pin): read the temperature and humidity of sensor DHT11, and return values used to
determine whether the data is normal.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com A

Chapter 22 Matrix Keypad

Earlier we learned about a single Push Button Switch. In this chapter, we will learn about Matrix Keyboards,
which integrates a number of Push Button Switches as Keys for the purposes of Input.

Project 22.1 Matrix Keypad

In this project, we will attempt to get every key code on the Matrix Keypad to work.

Component List

Raspberry Pi (with 40 GPIO) x1 4x4 Matrix Keypad x1
GPIO Expansion Board & Wire x1
Breadboard x1

Jumper wire

— - -

Resistor 10kQ x4

Component knowledge

4x4 Matrix Keypad
A Keypad Matrix is a device that integrates a number of keys in one package. As is shown below, a 4x4 Keypad

Matrix integrates 16 keys (think of this as 16 Push Button Switches in one module):

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

258 support@freenove.com www.freenove.com [l

4x4 Keypad

af 3] 2 1]

[for e

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one

8 1

pin and this is the same for the columns. Such efficient connections reduce the number of processor ports
required. The internal circuit of the Keypad Matrix is shown below.

1 2 3
— — — A—L
4 5 6 B
[PR s S — el
*~— O—l — 01 — O—J — 01 =
7 8 9 C
—_— — — P R—
*— Oj *— D—l *«— Dj *—0 D—l 6
*
< O—I — oj " oj — O—J 5

4 3 2 1

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the
state of each key's position by column and row. Take column scanning method as an example, send low level
to the first 1 column (Pinl), detect level state of row 5, 6, 7, 8 to judge whether the key A, B, C, D are pressed.
Then send low level to column 2, 3, 4 in turn to detect whether other keys are pressed. Therefore, you can
get the state of all of the keys.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EEEE]

Circuit

Schematic diagram

10kQ

R2
10kQ
R3
10kQ

R1

AAAA R4
10kQ

e 33V 5V I
[SDA1 TXDO }=8—
—51scL1 RXDO -0 ax4 keypad

—L1GPI04 GPIO18}-12 S EmEE
GPI0T7 111GPI017 GPI023}-16 AT 1
GPI027 13 1GP1027 GPI1024 18 6 HEER
GPI022 15 1GPI1022 GP1025}-22 ST T T
MOSI 19 Imosi| CEOQ}24—

21Imiso CE1}26.

-2313CLK SCLO8-

-2L1sSDA0 GPIO12}32—

291GPI05 GPIO16 |35~

S11GPIo6 GPI1020 |38~

-331GPI013 GPI021 40

-321GPI019

-3L1GPIO26 Raspberry Pi

GPIO Extension Shield
GND

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

® e e e e oo e e e e e 0 L}
] . e o0 00 e o 0 0 0 ® o e 00 o
e
£
(2]
c . o 000000 © e 0 0
o . oo e 00000 ® o 0 00
g B ® o0 00000 LI A]
3 a ® o o 0 0 0 00 ® e 0 00
Iﬁ g o 000000 ® o 0 00
o
o
o
o a ®© © 9 9900000000000 0000000
= 5 ® 09 0000000000000 0 000 e 00
o © © 0 0000000000000 0000000
E‘ . © 0000000000000 00 000000
g . © © 9000000000000 00000000
Q
%]
©
o . e o000 e o 0 0 0 e o 00 0 DA}
oo e e e e e o e o0 0 e ® e 000 oo e

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

This code is used to obtain all key codes of the 4x4 Matrix Keypad, when one of the keys is pressed, the key
code will be displayed in the terminal window.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via:
1. Use cd command to enter 22.1.1_MatrixKeypad directory of C code.
cd ~/Freenove_Kit/Code/C_Code/22.1.1_MatrixKeypad
2. Code of this project contains a custom header file. Use the following command to compile the code
MatrixKeypad.cpp, Keypad.cpp and Key.cpp generate executable file MatrixKeypad. The custom header
file will be compiled at the same time.
gcc MatrixKeypad.cpp Keypad.cpp Key.cpp —o MatrixKeypad -lwiringPi
3. Run the generated file "MatrixKeypad".
sudo ./MatrixKeypad
After the program is executed, pressing any key on the MatrixKeypad, will display the corresponding key code
on the Terminal. As is shown below:
Program 1
\ -

= O U I L B~

L R e o I

=

=
=
=
=
=
=
=
=
=
=
Pr
=
=
=
Pr

H %

The following is the program code:

1 #include “Keypad. hpp”

2 #include <stdio.h>

3 const byte ROWS = 4; //four rows

4 const byte COLS = 4; //four columns

5 char keys[ROWS][COLS] = { //key code

6 01,2,°3,0},

7 {4,’5,°6,’ B}

8 07,8,79,°C},

9 {*,70,#, D}

10 |1

11 byte rowPins[ROWS] = {1, 4, 5, 6 }; //define the row pins for the keypad
12 byte colPins[COLS] = {12,3, 2, 0 }; //define the column pins for the keypad

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

//create Keypad object
Keypad keypad = Keypad(makeKeymap (keys), rowPins, colPins, ROWS, COLS);

int main() {

printf ("Program is starting ... \n”);

wiringPiSetup () ;

char key = 0;
keypad. setDebounceTime (50) ;
while (1) {
key = keypad. getKey(); //get the state of keys
if (key) { //if a key is pressed, print out its key code
printf ("You Pressed key : %c \n”, key);

}

return 1;

}
In this project code, we use two custom library file "Keypad.hpp" and "Key.hpp". They are located in the same
directory with program files "MatrixKeypad.cpp”, "Keypad.cpp” and "Key.cpp”. The Library Keypad is
“transplanted” from the Arduino Library Keypad. This library file provides a method to read the Matrix
Keyboard’s input. By using this library, we can easily read the pressed keys of the Matrix Keyboard.
First, we define the information of the Matrix Keyboard used in this project: the number of rows and columns,
code designation of each key and GPIO pin connected to each column and row. It is necessary to include the
header file "Keypad.hpp".

#include “Keypad. hpp”

#include <stdio.h>

const byte ROWS

const byte COLS = 4; //four columns

char keys[ROWS][COLS] = { //key code
{r, 2,3, 0%,

4; //four rows

{’4,,,5’,’6,,,B’},
{J7v,>81,19a,>cl},
{)*7,701,1#7,7]-))}

}

byte rowPins[ROWS]

byte colPins[COLS]
Then, based on the above information, initiates a Keypad class object to operate the Matrix Keyboard.
- Keypad keypad = Keypad(makeKeymap (keys), rowPins, colPins, ROWS, COLS); ‘
Set the debounce time to 50ms, and this value can be set based on the actual characteristics of the keyboard’s

{1, 4, 5, 6}; //connect to the row pinouts of the keypad

{12,3, 2, 0 }; //connect to the column pinouts of the keypad

flexibly, with a default time of 10ms.

- keypad. setDebounceTime (50) ; ‘

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [

In the "while" loop, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key
pressed, its key code will be stored in the variable "key", then be displayed.

while (1) {
key = keypad. getKey(); //get the state of keys
if (key) { // if a key is pressed, print out its key code

printf("You Pressed key : % \n”, key) :

}

The Keypad Library used for the RPi is transplanted from the Arduino Keypad Library. And the source files can
be obtained by visiting http://playground.arduino.cc/Code/Keypad. As for transplanted function library, the
function and method of all classes, functions, variables, etc. are the same as the original library. Partial contents

of the Keypad library are described below:

Keypad (char *userKeymap, byte *row, byte *col, byte numRows, byte numCols) ;
Constructor, the parameters are: key code of keyboard, row pin, column pin, the number of rows, the

number of columns.

char getKeyQ;

Get the key code of the pressed key. If no key is pressed, the return value is NULL.
void setDebounceTime (uint) ;

Set the debounce time. And the default time is 10ms.

void setHoldTime (uint) ;

Set the time when the key holds stable state after pressed.

bool isPressed(char keyChar);

Judge whether the key with code "keyChar" is pressed.

char waitForKey () ;

Wait for a key to be pressed, and return key code of the pressed key.
KeyState getState();

Get state of the keys.

bool keyStateChanged() ;

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the

opening file "Keypad.hpp".

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 22.1.1_MatrixKeypad directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/22.1.1_MatrixKeypad

2. Use Python command to execute code "MatrixKeypad.py".

python MatrixKeypad.py

After the program is executed, pressing any key on the MatrixKeypad, will display the corresponding key code
on the Terminal. As is shown below:

o I S W N

= D % 00

Fu
F.
I:.
I:u
I:u
Fu
Fu
Fu
Fu
Fu
F.
I:.
I:u
I:u
Fu

The following is the program code:

1 import RPi.GPIO as GPIO

2 import Keypad #import module Keypad

3 ROWS = 4 # number of rows of the Keypad

4 COLS = 4 #tinumber of columns of the Keypad

5 keys= [71,72,°3,A, ftkey code

6 '4,’5,’6,’ B,

7 7,8,79,C,

8 , 0, #,)D]

9 rowsPins = [12, 16, 18, 22] ficonnect to the row pinouts of the keypad

10 colsPins = [19, 15, 13, 11] ficonnect to the column pinouts of the keypad
11

12 def loop():

13 keypad = Keypad. Keypad (keys, rowsPins, colsPins, ROWS, COLS) ficreat Keypad object
14 keypad. setDebounceTime (50) #iset the debounce time

15 while (True) :

16 key = keypad. getKey () #obtain the state of keys

17 if(key != keypad.NULL) : #if there is key pressed, print its key code
18 print ("You Pressed Key : %c “%(key))

19

20 if name == main

21 print ("Program is starting ... ”)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

< support@freenove.com [

22 try:

23 loop ()

24 except KeyboardInterrupt:
25 GPT0. cleanup ()

In this project code, we use two custom library files "Keypad.hpp" and "Key.hpp". They are located in the
same directory with program files "MatrixKeypad.cpp”, "Keypad.cop” and "Key.cpp". The Library Keypad is
“transplanted” from the Arduino Library Keypad. This library file provides a method to read the Matrix
Keyboard’s input. First, import the module Keypad. Then define the information of the matrix keyboard used
in this project: the number of rows and columns, code of each key and GPIO pin connected to each column

and each row.

import Keypad #import module Keypad
ROWS = 4 #number of rows of the Keypad
COLS = 4 #number of columns of the Keypad
keys = [17,72,73,A, tkey code
45,76, 8,
7,’8,79,C,
70,0’ D]
rowsPins = [12, 16, 18, 22] #connect to the row pinouts of the keypad
colsPins = [19, 15, 13, 11] #connect to the column pinouts of the keypad

Then, based on the above information, initiates a Keypad class object to operate the Matrix Keyboard.

‘ ‘ keypad = Keypad. Keypad (keys, rowsPins, colsPins, ROWS, COLS)

Set the debounce time to 50ms, and this value can be set based on the actual characteristics of the keyboard’s

flexibly, with a default time of 10ms.

‘ ‘ keypad. setDebounceTime (50)

In the "while" loop, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key
pressed, its key code will be stored in the variable "key", and then be displayed.

while(True) :
key = keypad. getKey ()
if(key != keypad.NULL) :

print ("You Pressed Key

ftiget the state of keys
if a key is pressed, print out its key code
- % "% (key))

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

The Keypad Library used for the RPi is “transplanted” from the Arduino Keypad Library. The source files is
written by language C++ and translated into Python <can be obtained by visiting
http://playground.arduino.cc/Code/Keypad. As for the “transplanted” function library, the function and
method of all classes, functions, variables, etc. are the same as the original library. Partial contents of the

Keypad Library are described below:

def init_ (self, usrKeyMap, row Pins, col Pins, num Rows, num Cols) :

Constructed function, the parameters are: key code of keyboard, row pin, column pin, the number of rows,
the number of columns.

def getKey(self):

Get a pressed key. If no key is pressed, the return value is keypad NULL.
def setDebounceTime (self, ms) :

Set the debounce time. And the default time is 10ms.

def setHoldTime (self, ms):

Set the time when the key holds stable state after pressed.

def isPressed(keyChar) :

Judge whether the key with code "keyChar" is pressed.

def waitForKey() :

Wait for a key to be pressed, and return key code of the pressed key.
def getState():

Get state of the keys.

def keyStateChanged() :

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the
opening file "Keypad.py".

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad

B www.freenove.com D4 support@freenove.com Y

Chapter 23 Infrared Motion Sensor

In this chapter, we will learn a widely used sensor, Infrared Motion Sensor.

Project 23.1 PIR Infrared Motion Detector with LED Indicator

In this project, we will make a Motion Detector, with the human body infrared pyroelectric sensors.
When someone is in close proximity to the Motion Detector, it will automatically light up and when there is

no one close by, it will be out.
This Infrared Motion Sensor can detect the infrared spectrum (heat signatures) emitted by living humans and

animals.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper x5
GPIO Expansion Board & Ribbon Cable x1
—-- - -
Breadboard x1
HC SR501 x1 LED x1 Resistor 220Q x1
//,7 "\\
.// \
//‘ \"\
[\
\\\ y
b " 4
S
et

Component Knowledge

The following is the diagram of the Infrared Motion Sensor (HC SR-501) a PIR Sensor:

Top Bottom Schematic
-~ g d\\
£ A\
I \ A+
| | nE)
\ y il
\ y
\ 4
- - Infrared Motion Sensor(HC SR501)
—S+
Description:

1. Working voltage: 5v-20v(DC) Static current: 65uA.
2. Automatic Trigger. When a living body enters into the active area of sensor, the module will output high

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

level (3.3V). When the body leaves the sensor’s active detection area, it will output high level lasting for
time period T, then output low level(OV). Delay time T can be adjusted by the potentiometer R1.

3. Induction block time: the induction will stay in block condition and does not induce external signal at
lesser time intervals (less than delay time) after outputting high level or low level

4. Initialization time: the module needs about 1 minute to initialize after being powered ON. During this
period, it will alternately output high or low level.

5. One characteristic of this sensor is when a body moves close to or moves away from the sensor's dome
edge, the sensor will work at high sensitively. When a body moves close to or moves away from the
sensor's dome in a vertical direction (perpendicular to the dome), the sensor cannot detect well (please
take note of this deficiency). Actually this makes sense when you consider that this sensor is usually placed
on a celling as part of a security product. Note: The Sensing Range (distance before a body is detected)
is adjusted by the potentiometer.

We can regard this sensor as a simple inductive switch when in use.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

(e}
O
N

support@freenove.com [l

= € R ‘
O Q o e o000 e o000 o
o o
- H o ® o 0 0 0 e o000 T
W W o e 0000 e oo 00 o
(@] (@) o ® o 0 0 0 e o 0 0 0 LI
[c oo 0 0 0 e o0 0 0
e e o o e 5 o 5 0 ® o o o 0 LR]
e e e o e o o 0 0 L L LR]
@ ﬂ L] ® o o 0 0” e o
= @ L] e o o 0 e o ® 0 0 * o
m j LY oo 0 0 0 oo 0 0 0 o
o o ©e o0 0 0 s e 00
o Q ° ® o0 0 0 s o000 o
-] Qo L) I) ® o0 00 LY
0 w o e o 00 0 e o000 °
@ o .. o oo 00 e 0000 °
mm .© o ® o0 0 0 DR) o
o > e o000 s o0 0
4 w o oo 00 s o000 o
— Tl e o000 s o000 o
[®] ° e o 0 00 e 0o 0 00 ° 0
m o » ® o o 0 0 L I B e »
c e oo 0 00 e 0o 00 0 oo
O . . .
ofcdeidadof<lddolddd] ° eoll ssseell ceice |loe
S82RI8RNaYERN o P coll socesMeceee oo
WWDDDDCC%DDPUD DWW % o oo 00 e 00 00 ° S
oo oo — (@]
=0 [y oo e 0o 0 0 0 s e 00 °
3 RHSUEICS ISESISIE .m.m — ® o0 0 0 oo 000 m
%mm __ % ° ® o0 0 0 oo 0 00 ° [aa)
> Rm|_ “— lcoé'ooo LY
W_'\IM 47”% 5639% :X._G m.w wl oom o 0o 0 0 LI
Z3209088 4202000 5 8 U s - | |-
BHOOBCOSSHR0B006 © [o% ¥%1701dD aND*
2 = RSN A L0015 61o1dne IO [—
s 5 SRR (B #9101dD 610140 L
s I LB eaNo ~ £10140 (I
a R B #7101dD 901dD* LS
__ w L) e » ENP) L)
-~ W - oouoﬁvm C +
% U o o LlkD) .
* 0 g m ° e LY 903D)
5 I BB *sz0140 osine = :
m D L) LI
s (O] o .
O |z c .
< ° > °
~— £ o)
£ > :
= — ..W —
S 5 2\ 8
s) S o=
o S = e &
> © S
[@)] o =
S © c =
o 5 S PIaIyS uoisualx3 Oldo !d Auaqdsey °
= e) 3
W — ..M o FEEEEEEEREEEEEEEERD EEEEEEEEEEEEEEEEES
2 'S c m S
s >
O o ° 2
B = G ©)
O (%2} T I

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Description:

1. You can choose non-repeatable trigger modes or repeatable modes.
L: non-repeatable trigger mode. The module output high level after sensing a body, then when the
delay time is over, the module will output low level. During high level time, the sensor no longer actively
senses bodies.
H: repeatable trigger mode. The distinction from the L mode is that it can sense a body until that body
leaves. After this, it starts to time and output low level after delaying T time.

2. Rl is used to adjust HIGH level lasting time when sensor detects human motion, 1.2s-320s.

3. R2is used to adjust the maxmum distance the sensor can detect, 3~5m.

Here we connect L and adjust R1 and R2 like below to do this project.

Put you hand close and away from the sensor slowly. Obsever the LED in previous circuit.

It need some time between two detections.

-

Code

In this project, we will use the Infrared Motion Sensor to trigger an LED, essentially making the Infrared Motion
sensor act as a Motion Switch. Therefore, the code is very similar to the earlier project "Push Button Switch
and LED". The difference is that, when Infrared Motion Sensor detects change, it will output high level; when
button is pressed, it will output low level. When the sensor output high level, the LED turns ON, or it will turn
OFF.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 23.1.1_SenselLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/23.1.1_SenseLED

2. Use following command to compile "SenselED.c" and generate executable file "SenselLED".

gcc SenseLED.c -o SenseLED -lwiringPi

3. Run the generated file "SenselLED".

sudo ./SenseLED

After the program is executed, wait 1 minute for initialization. Then move away from or move closer to the
Infrared Motion Sensor and observe whether the LED turns ON or OFF. The Terminal window will continuously
display the state of LED. As is shown below:

The following is the program code:

1 finclude <wiringPi.h>

2 #include <stdio.h>

3

4 #define ledPin 1 //define the ledPin

5 f#idefine sensorPin 0 //define the sensorPin

6

7 int main(void)

8 {

9 printf ("Program is starting ... \n”);

10

11 wiringPiSetup() ;

12

13 pinMode (1edPin, OUTPUT) ;

14 pinMode (sensorPin, INPUT);

15

16 while (1) {

17

18 if (digitalRead (sensorPin) == HIGH) { //if read value of sensor is HIGH level
19 digitalWrite (ledPin, HIGH); //make led on
20 printf(“led turned on >>> \n”);

21 }

22 else {

23 digitalWrite (ledPin, LOW); //make led off
24 printf(“led turned off <<< \n”);

25 }

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

26 }

28 return 0;
29 |}
It can be seen that the code is based on the same principles of the "ButtonLED" code in addition to
determining the level of the input signal.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 22.1.1_MatrixKeypad directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/23.1.1_SenseLED

2. Use Python command to execute code "SenselLED.py".

python SenseLED.py

After the program is executed, wait 1 minute for initialization. Then move away from or move closer to the
Infrared Motion Sensor and observe whether the LED turns ON or OFF. The Terminal window will continuously
display the state of LED. As is shown below:

2C
2C
20
2C
e

=18
=

The following is the program code:

1 import RPi.GPIO as GPIO

2

3 ledPin = 12 # define ledPin

4 sensorPin = 11 # define sensorPin

5

6 def setup():

7 GPIO0. setmode (GPIO0. BOARD) # use PHYSICAL GPIO Numbering
8 GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode
9 GPIO. setup(sensorPin, GPIO.IN) # set sensorPin to INPUT mode
10

11 def loop():

12 while True:

13 if GPIO. input (sensorPin)==GPI0. HIGH:

14 GPIO0. output (1edPin, GPIO0. HIGH) # turn on led

15 print (led turned on >>>")

16 else :

17 GPIO0. output (1edPin, GPI0. LOW) # turn off led

18 print (led turned off <<<7)

19

20 | def destroy():

21 GPIO0. cleanup () # Release GPIO resource
22

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com R4

if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

It can be seen that the code is based on the same principles as the "ButtonLED" code in addition to
determining the level of the input signal.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Chapter 24 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance, HC SR04.

Project 24.1 Ultrasonic Ranging

In this project, we use ultrasonic ranging module to measure distance, and print out the data in the terminal.

Component List

Raspberry Pi (with 40 GPIO) x1 HC SR04 x1
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1
Jumper Wire x4 Resistor 1kQ x1
e/ P —
—-a-. -

Component Knowledge

The Ultrasonic Ranging Module uses the principle that ultrasonic waves will be reflected when they encounter
any obstacles. This is possible by counting the time interval between when the ultrasonic wave is transmitted
to when the ultrasonic wave reflects back after encountering an obstacle. Time interval counting will end after
an ultrasonic wave is received, and the time difference (delta) is the total time of the ultrasonic wave's journey
from being transmitted to being received. Because the speed of sound in air is a constant, and is about
v=340m/s, we can calculate the distance between the Ultrasonic Ranging Module and the obstacle: s=vt/2.

RIC (€ CC(
T])))))))

|« S >| 2S=Vit,

The HC-SR04 Ultrasonic Ranging Module integrates a both an ultrasonic transmitter and a receiver. The
transmitter is used to convert electrical signals (electrical energy) into high frequency (beyond human hearing)
sound waves (mechanical energy) and the function of the receiver is opposite of this. The picture and the
diagram of the HC SR04 Ultrasonic Ranging Module are shown below:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

HC-SR04

R E
\ o k««
gEEs HC-SR04
Pin description:
VCC power supply pin
Trig trigger pin
Echo Echo pin
GND GND
Technical specs:
Working voltage: 5V Working current: 12mA
Minimum measured distance: 2cm Maximum measured distance: 200cm

Instructions for Use: output a high-level pulse in Trig pin lasting for least 10uS, the module begins to transmit
ultrasonic waves. At the same time, the Echo pin is pulled up. When the module receives the returned
ultrasonic waves from encountering an obstacle, the Echo pin will be pulled down. The duration of high level
in the Echo pin is the total time of the ultrasonic wave from transmitting to receiving, s=vt/2. This is done
constantly.

10us

Trigger signal
(Input)

Echo time

Echo signal
(Output)

Distance = Echo time x sound velocity / 2 .

support@freenove.com [l

275

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit

Note that the voltage of ultrasonic module is 5V in this circuit.

Schematic diagram

' SDA1
SCL1
GP104
GPIO17
GP1027
GPIO22
'MOSI
‘MISO
'SCLK

' SDAO
GPIO5
GP106
GPIO13
GPIO19

KRB G L

3.3V

(GP1026 Raspberry Pi
GPIO Extension Shield
GND

5V

TXDO
RXDO
GPIO18
GPI1023

=
R
-

16

vCC

GP1024
GPI1025
CEO
CE1
SCLO
GPIO12
GPIO16
GPI1020
GPIO21

PEBRERRR

Trig
Echo
GND

HC-SR04

1kQ

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

. ® e 0 0 0 L . LR oo

5Ve B3

5Ve O
GNDe B0
TXDO0e I3
RXDOs I
GND» IR

LI #GPI022 GPIO23e

T #3V3

LY #GPIO17 GPIO18e
L] #MOSI

Py #3V3
P #SDA1
P #SCL1
P «GPIO4
P «GND
B «GPI027

GPI024e
GNDe

O eMISO GPIO25e
P #SCK

LN .GND
P #SDAO

GND.
GPIO21e

ZZ%

06 GPIO12e

013
019 GPIO16e

026 GPIO20w

et ot et et it

P ENT

LR) .GP
P oGP,
LN .GP
L .GP
g #GND

I | | 1 T R]

® © 9 0 0 0 0 0 0 0 0 0 000000000 O 0O OO0 e e
® 6 0 9 60 0 0 0000000000 000000 e e e e e

Raspberry Pi GPIO Extension Shield

e o 0 0o 0
© o 0 00

e e
oo
.o

.

e o o 0 ® o0 00

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 24.1.1_UltrasonicRanging directory of C code.

cd ~/Freenove_Kit/Code/C_Code/24.1.1_UltrasonicRanging

2. Use following command to compile "UltrasonicRanging.c” and generate executable file
"UltrasonicRanging".

gcc UltrasonicRanging.c -o UltrasonicRanging -lwiringPi

3. Then run the generated file "UltrasonicRanging".

sudo ./UltrasonicRanging

After the program is executed, aim the Ultrasonic Ranging Module’s detectors (“eyes”) perpendicular to the

surface of an object (try using your hand). The distance between the ultrasonic module and the object will be

displayed in the terminal. As is shown below:

The following is the program code:

1 #include <wiringPi. h>

2 #include <stdio.h>

3 #include <sys/time.h>

4

5 ftdefine trigPin 4

6 #define echoPin b

7 #define MAX DISTANCE 220 // define the maximum measured distance

8 #define timeOut MAX DISTANCE*60 // calculate timeout according to the maximum measured
9 distance

10 //function pulseln: obtain pulse time of a pin

11 int pulseln(int pin, int level, int timeout);

12 float getSonar() { //get the measurement result of ultrasonic module with unit: cm
13 long pingTime;

14 float distance;

15 digitalWrite(trigPin, HIGH); //send 10us high level to trigPin

16 delayMicroseconds (10) ;

17 digitalWrite (trigPin, LOW) ;

18 pingTime = pulseln(echoPin, HIGH, timeOut); //read plus time of echoPin

19 distance = (float)pingTime * 340.0 / 2.0 / 10000.0; //calculate distance with sound speed
20 340m/s

21 return distance;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

int main() {

printf ("Program is starting ... \n”):

wiringPiSetup() ;

float distance = 0;

pinMode (trigPin, OUTPUT) ;

pinMode (echoPin, INPUT) ;

while (1) {
distance = getSonar () ;
printf ("The distance is : %. 2f cm\n”, distance);
delay (1000) ;

}

return 1;

First, define the pins and the maximum measurement distance.

#tdefine trigPin 4

ftdefine echoPin 5

#tdefine MAX DISTANCE 220 //define the maximum measured distance
If the module does not return high level, we cannot wait for this forever, so we need to calculate the time
period for the maximum distance, that is, time Out. timeOut= 2*xMAX_DISTANCE/100/340+1000000. The
result of the constant part in this formula is approximately 58.8.
- #tdefine timeOut MAX DISTANCE*60

Subfunction getSonar () function is used to start the Ultrasonic Module to begin measurements and return
the measured distance in cm units. In this function, first let trigPin send 10us high level to start the Ultrasonic
Module. Then use pulseln () to read the Ultrasonic Module and return the duration time of high level. Finally,
the measured distance according to the time is calculated.

float getSonar () { // get the measurement results of ultrasonic module, with unit: cm

long pingTime;

float distance;

digitalWrite (trigPin, HIGH) ; //trigPin send 10us high level

delayMicroseconds (10) ;

digitalWrite (trigPin, LOW) ;

pingTime = pulseln(echoPin, HIGH, timeOut); //read plus time of echoPin

distance = (float)pingTime * 340.0 / 2.0 / 10000.0; // the sound speed is 340m/s, and
calculate distance

return distance;

Lastly, in the while loop of main function, get the measurement distance and display it continually.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com AR

while (1) {
distance = getSonar () ;
printf ("The distance is @ % 2f cm\n”, distance) ;
delay (1000) ;

}

About function pulseIn():

Return the length of the pulse (in microseconds) or O if no pulse is completed before the timeout (unsigned
long).

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 24.1.1_UltrasonicRanging directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/24.1.1_UltrasonicRanging

2. Use Python command to execute code "UltrasonicRanging.py".

python UltrasonicRanging.py

After the program is executed, aim the Ultrasonic Ranging Module’s detectors (“eyes”) perpendicular to the
surface of an object (try using your hand). The distance between the ultrasonic module and the object will be
displayed in the terminal. As is shown below:

The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3

4 trigPin = 16

5 echoPin = 18

6 MAX DISTANCE = 220 #define the maximum measured distance (cm)

7 timeOut = MAX DISTANCE#60 #calculate timeout(ns) according to the maximum measured
8 distance

9

10 def pulseln(pin, level, timeOut): # function pulseln: obtain pulse time of a pin
11 t0 = time. time ()

12 while (GPIO. input (pin) != level):

13 if((time. time() - t0) > timeOut*0.000001) :

14 return 0;

15 t0 = time. time ()

16 while (GPIO. input (pin) == level):

17 if((time. time() - t0) > timeOut*0.000001) :

18 return 0;

19 pulseTime = (time. time() — t0)*1000000

20 return pulseTime

21

22 def getSonar(): figet the measurement results of ultrasonic module,with unit: cm
23 GPIO. output (trigPin, GPI0. HIGH) f#make trigPin send 10us high level

24 time. sleep (0. 00001) #10us

25 GPI0. output (trigPin, GPI0. LOW)

26 pingTime = pulseln(echoPin, GPTO. HIGH, timeOut) firead plus time of echoPin
27

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com JAsH

distance = pingTime * 340.0 / 2.0 / 10000.0 # the sound speed is 340m/s, and
calculate distance (cm)

return distance

def setup():
print (' Program is starting...’)
GPIO. setmode (GPI0. BOARD) #numbers GPIOs by physical location
GPIO. setup(trigPin, GPIO.OUT) # set trigPin to output mode
GPIO. setup (echoPin, GPIO. IN) # set echoPin to input mode

def loop():
while (True) :
distance = getSonar ()
print (“The distance is : % 2f cm”%(distance))
time. sleep (1)

if name == main : #program start from here
setup()
try:
Loop ()
except KeyboardInterrupt:
GPI0. cleanup ()

First, define the pins and the maximum measurement distance.

trigPin = 16
echoPin = 18
MAX_DISTANCE = 220 # define the maximum measured distance 220cm

If the module does not return high level, we cannot wait for this forever, so we need to calculate the time
period for the maximum distance (200cm). Then timOut= 2*MAX_DISTANCE/100/340+1000000. The result
of the constant part in this formula is approximately 58.8.

[timeOut = MAX DISTANCE*60

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Subfunction getSonar () function is used to start the Ultrasonic Module to begin measurements, and return
the measured distance in cm units. In this function, first let trigPin send 10us high level to start the Ultrasonic
Module. Then use pulseln () to read the Ultrasonic Module and return the duration time of high level. Finally,
the measured distance according to the time is calculated.

def getSonar(): #get the measurement results of ultrasonic module, with unit: cm
GPIO. output (trigPin, GPI0. HIGH) #imake trigPin send 10us high level
time. sleep (0. 00001) #10us

GPIO. output (trigPin, GPI0. LOW)
pingTime = pulseln(echoPin, GPI0. HIGH, timeOut) firead plus time of echoPin
distance = pingTime * 340.0 / 2.0 / 10000.0 # the sound speed is 340m/s, and

calculate distance

return distance

Finally, in the while loop of main function, get the measurement distance and display it continually.
while(True) :

distance = getSonar ()

print (“The distance is : %. 2f cm”%(distance))

time. sleep (1)

About function def pulseln(pin, level, timeOut) :

Return the length of the pulse (in microseconds) or O if no pulse is completed before the timeout (unsigned
long).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com JRASK]

Chapter 25 Attitude Sensor MPU6050

In this chapter, we will learn about a MPU6050 Attitude sensor, which integrates an Accelerometer and

Gyroscope.

Project 25.1 Read a MPU6050 Sensor Module

In this project, we will read Acceleration and Gyroscope Data of the MPU6050 Sensor.

Component List

Raspberry Pi (with 40 GPIO) x1 MPUB050 x1
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x4

—-a-. -

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

MPU6050

MPUGB050 Sensor Module is a complete 6-axis Motion Tracking Device. It combines a 3-axis Gyroscope, a 3-
axis Accelerometer and a DMP (Digital Motion Processor) all in a small package. The settings of the
Accelerometer and Gyroscope of MPU6050 can be changed. A precision wide range digital temperature
sensor is also integrated to compensate data readings for changes in temperature, and temperature values
can also be read. The MPU6050 Module follows the 12C communication protocol and the default address is

0x68.
1
I ® \cc \4 — VCC
2 X %_&? L GND
3 DR AR 3] SCL
'l @ spaA 4 SDA
s T 21 XDA
@l \pyeoso % XCL
Y8 ® ADo -1 ADO
1. @ SB1INT
MPU6050

The port description of the MPU6050 Module is as follows:

Pin name Pin number Description
VCC 1 Positive pole of power supply with voltage 5V
GND 2 Negative pole of power supply
SCL 3 I2C communication clock pin
SDA 4 |2C communication data pin
XDA 5 I2C host data pin which can be connected to other devices.
XCL 6 I2C host clock pin which can be connected to other devices.
ADO 7 I2C address bit control pin.
Low level: the device address is 0x68
High level: the device address is 0x69
INT 8 Output interrupt pin

For more detail, please refer to the MPU6050 datasheet.

MPUGB050 is widely used to assist with balancing vehicles, robots and aircraft, mobile phones and other
products which require stability to control stability and attitude or which need to sense same.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [

Circuit

Note that the power supply voltage for MPU6050 module is 5V in this circuit.

Schematic diagram

vee :121
GND 3——'

|| 3.3V 5v
scL >dsnm TXDO|-8
spA |4 SCL1 RXDO |19
XDA |- —LIGPI104 GPIO18}2
xcL 5 11iGPIO17 GPI023}-16
ADO |- 131GPI027 GPI024|-18
INT |8 ,g GPI022 GPI025 22—
19 Imosi CEOQ 24—~
MPU6050 -ZJ—-MISO CE1 .Zﬁ_
L31sCLK SCLo |28~
LLISDAO GPIO12}32-
291GPI05 GPIO16 |36
S11GPIO6 GPI020}38
-331GPI013 GPI021 140
%-GPIOW
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

® e 00 000 0 ® e 0o 0 0 0 0 0 0 0 0
® © © 0 0 0 0 0 0 0 0 00 000 0 0 e e
Pttt et et

® o0 0 0 0 0 0 0 00 0 0 00 0 0 e o 0

® © © 0 0 00 0 0 0 0 0 0 0 e e 0 e o

® 0 0 0 0 00 0 0 0 0 0 00 0 e e U

® 0 0 0 0 0 00 0000 0 00 0 0 00 .

.

L] . ® o 0o 0 0 U . . .

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

In this project, we will read the acceleration data and gyroscope data of MPU6050, and print them out.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 25.1.1_MPUG6050RAW directory of C code.

cd ~/Freenove_Kit/Code/C_Code/25.1.1_MPU6050

2. Use following command to compile "MPUB050RAW.c", "MPU6050.cpp” and "12Cdev.cpp”, and generate
executable file "MPUG050RAW".

gcc MPU6OSORAW.cpp MPU6050.cpp I2Cdev.cpp —o MPU6O50RAW

3. Then run the generated file "MPUB050RAW".

sudo ./MPU6O50RAW

After the program is executed, the Terminal will display active accelerometer and gyroscope data of the

MPUG050, as well as the conversion to gravity acceleration and angular velocity as units of data. As shown in

the following figure:

The following is the program code:

1 #include <stdio.h>

2 #include <stdint.h>

3 #include <unistd.h>

4 #include “I2Cdev.h”

5 #include “MPU6050.h”

6

7 MPU6050 accelgyro; //creat MPU6050 class object
8

9 intl6 t ax, ay, az; //store acceleration data

10 intl6 t gx, gy, gz; //store gyroscope data

11

12 void setup() {

13 // initialize device

14 printf(“Initializing 12C devices...\n”);

15 accelgyro. initialize () ; //initialize MPU6050
16

17 // verify connection

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

printf ("Testing device connections...\n”);
printf (accelgyro. testConnection() ? "MPU6050 connection successful\n” : “MPU6050

connection failed\n”);

}

void loop) {
// read accel/gyro values of MPU6050
accelgyro. getMotion6 (&ax, &ay, &az, &gx, &gy, &gz);
// display accel/gyro x/y/z values
printf(“a/g: %6hd %6hd %6hd %6hd %6hd %6hd\n”, ax, ay, az, gx, gy, gz) ;
printf(“a/g: %.2f g % 2f g %.2f g % 2f d/s % 2f d/s % 2f d/s
\n”, (float)ax/16384, (float)ay/16384, (float)az/16384,
(float) gx/131, (float) gy/131, (float)gz/131) ;

}

int main()

{
setup() ;
while (1) {

loop () ;

}
return 0;

}

Two library files "MPU6050.h" and "I2Cdev.h" are used in the code and will be compiled with others. Class

MPUGB050 is used to operate the MPU6050 Sensor. When used, first it initiates an object.

! MPU6050 accelgyro;

In the setup function, the MPUG050 is initialized and the result of the initialization will be tested.

void setup() {
// initialize device
printf("Tnitializing 12C devices...\n”);
accelgyro. initialize(); //initialize MPU6050

// verify connection

printf("Testing device connections...\n”);

printf(accelgyro. testConnection() ? “MPUB050 connection successful\n” : “MPU6050

connection failed\n”);

}

In the loop function, read the original data of MPU6050, display them and then convert the original data into

the corresponding acceleration and angular velocity values, then display the converted data out.

void loop() {
// read raw accel/gyro measurements from device
accelgyro. getMotion6 (&ax, &ay, &az, &gx, &gy, &gz);
// display accel/gyro x/y/z values
printf(“a/g: %6hd %6hd %6hd %6hd %6hd %6hd\n”, ax, ay, az, gx, gy, g2) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

printf("a/g: %. 2f g % 2f g %. 2f g % 2f d/s %. 2f d/s %. 2f d/s
\n”, (float) ax/16384, (float)ay/ 16384, (float)az/16384,
(float) gx/131, (float) gy/131, (float) gz/131) ;

}
Finally, the main functions, called setup function and loop function respectively.
int main()
{
setup();
while (1) {
loop () ;
}
return 0;
}

About class MPU6050:

This is a class library used to operate the MPU6050, which can directly read and set the MPU6050. Here are
its functions:

MPU6050 () /MPU6050 (uint8_t address):

Constructor. The parameter is 12C address, and the default I2C address is 0x68.

void initialize();

Initialization function, used to wake up MPU6050. Range of accelerometer is +2g and range of gyroscope
is £250 degrees/sec.

void getMotion6(intl6 t* ax, intl6_t* ay, intl6_t* az, intl6 t* gx, intl6_t* gy, intl6_t* gz);

Get the original data of accelerometer and gyroscope.

intl6_t getTemperature();

Get the original temperature data of MPU6050.

For details about more relevant member functions, pleases refer to MPU6050.h or visit:
https://github.com/jrowberg/i2cdevlib

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/jrowberg/i2cdevlib

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 25.1.1_MPUG050RAW directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/25.1.1_MPU6050

2. Use Python command to execute code "MPUG050RAW.py".

python MPUG6O50RAW.py

After the program is executed, the Terminal will display active accelerometer and gyroscope data of the
MPUGB050, as well as the conversion to gravity acceleration and angular velocity as units of data. As shown in

The following is the program code:

1 import MPU6050

2 import time

3

4 mpu = MPU6050. MPU6050 () f#finstantiate a MPU6050 class object

5 accel = [0]%3 #istore accelerometer data

6 gyro = [0]#*3 fistore gyroscope data

7 def setup():

8 mpu. dmp_initialize() #initialize MPU6050

9

10 def loop():

11 while (True) :

12 accel = mpu. get_acceleration() figet accelerometer data
13 gyro = mpu. get rotation() figet gyroscope data

14 print ("a/g:%d\t%d\ t%d\ t%d\ t%d\ t%d

15 "% (accel[0], accel[1], accel[2], gyrol0], gyrol1], gyro[2]))

16 print ("a/g:%. 2f g\t%. 2f g\t%. 2f g\t%. 2f d/s\t%. 2f d/s\t%. 21
17 | d/s"%(accel[0]/16384.0, accel[1]/16384. 0,

18 accel[2]/16384. 0, gyro[01/131.0, gyro[11/131.0, gyro[2]/131.0))
19 time. sleep(0. 1)

20

21 if name == main

22 print ("Program is starting ...)

23 setup ()

24 try:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

25 loop ()
26 except KeyboardInterrupt:
27 pass

A module "MPU6050.py" is used in the code. The module includes a class used to operate MPU6050. When
used, first initiate an object.
| | mpu = MPUB050. MPUG050 ()
In the setup function, the MPU6050 is initialized.
def setup():
mpu. dmp_initialize()
In the loop function, read the original data of MPU6050, display them and then convert the original data into
the corresponding acceleration and angular velocity values, then display the converted data out.

def loop():
while(True) :
accel = mpu. get acceleration() ftget accelerometer data
gyro = mpu.getfrotation() fget gyroscope data

print ("a/g:%d\t%d\t%d\t%d\t%d\t%d
"% (accel[0], accel[1], accel[2], gyrol0], gyro[1], gyrol[2]))

print("a/g:%. 2f g\t%. 2f g\t%. 2f g\t%. 2f d/s\t%. 2f d/s\t%. 2f
d/s"%(accel[0]/16384.0, accel[1]/16384. 0,

accel[2]/16384. 0, gyro[0]/131.0, gyro[1]/131.0, gyro[2]/131.0))

time. sleep (0. 1)
About class MPUG050:
Class MPUG050 |
This is a class library used to operate MPU6050, which can directly read and set MPU6050. Here are some
member functions:
def init (self, a_bus=1, a_address=C.MPU6050 DEFAULT ADDRESS,
a_xAOff=None, a_yAOff=None, a_zAOff=None, a_ xGOff=None,
a_yGOff=None, a_zGOff=None, a_debug=False):

Constructor
def dmp initialize(self):
Initialization function, used to wake up MPU6050. Range of accelerometer is +2g and range of gyroscope
is +250 degrees/sec.
def get acceleration(self): & def get rotation(self):
Get the original data of accelerometer and gyroscope.
For details of more relevant member functions, please refer to MPU6050.py in the code folder.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com A

Chapter 26 Web loT

In this chapter, we will learn how to use GPIO to control the RPi remotely via a network and how to build a
WeblO service on the RPi.
This concept is known as “IoT” or Internet of Things. The development of loT will greatly change our habits

and make our lives more convenient and efficient

Project 26.1 Remote LED

In this project, we need to build a WeblOPi service, and then use the RPi GPIO to control an LED through the
web browser of phone or PC.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper M/M x2
— - -

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit

Schematic diagram

R1
220Q

WW

LED1

REBERNERE G

3.3V 5V

[SDA1 TXDO }=8—
SCL1 RXDO {10
| GPI04 GPIO18}12~
GPIO17 GP1023 16
|GPI027 GP1024 18
|GPI1022 GPI025}22
IMOSI CEQ 24—~
IMISO CE1}28~
'SCLK SCLO 28~
|SDAO GPIO12}32
|GPIO5 GPI016}-36
| GPI06 GPI1020}-38
(GPIO13 GPI021 40
(GPIO19
GP1026 Raspberry Pi

GPIO Extension Shield

GND

Hardware connection. If you need any support,

AAAAAAAARARARARARARARARARARARARAAANALAST

please feel free to contact us via: support@freenove.com

-

e

Raspberry Pi GPIO Extension Shield

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com AR

Solution from E-Tinkers

Here is a solution fromblog E-Tinkers, author Henry Cheung. For more details, please refer to link below:
https://www.e-tinkers.com/2018/04/how-to-control-raspberry-pi-gpio-via-http-web-server/

1, Make sure you have set python3 as default python. Then run following command in terminal to install
http.server in your Raspberry Pi.
sudo apt-get install http.server

2, Open WeblO.py
cd ~/Freenove_Kit/Code/Python_Code/26.1.1_WebIO
geany WebIO.py

3, Change the host_name into your Raspberry Pi IP address.
host_name = ’192.168.1.112 # Change this to your Raspberry Pi IP address
Then run the code WeblO.py

WeblO.py - /home/pi - Geany

View Document Project Build Tools Help
2 =2 X Yo © - ¢ 7| £

WeblOpy

import RP1.GPIO as GPIO
import os
from http.server import BaseHTTPReguestHandler, HTTPServer

'162.168.1.112" # Change this to your Raspberry P1 IP address

8000 o

%class MyServer (BaseHTTPReguestHandler):

host_name
host_port

"t"A special implementation of BaseHTTPReguestHander for reading data from
and control GPIO of a Raspberry P1i

Lo I o < JCN o T Y S P T X]

(=

3, Visit http://192.168.1.112:8000/ in web brower on compter under local area networks. Change IP to your
Raspberry Pi IP address.

192.168.1.112:8000 - Chromium

[@1921681.1128000 x| +

&« > C A F%#£|1921681.112:8000 <5

‘Welcome to my Raspberry Pi

Current GPU temperature is 53.0'C

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.e-tinkers.com/2018/04/how-to-control-raspberry-pi-gpio-via-http-web-server/
http://192.168.1.112:8000/

294

support@freenove.com www.freenove.com [l

WeblOPi Service Framework

Note: If you have a Raspberry Pi 4B, you may have some trouble. The reason for changing the file in the
configuration process is that the newer generation models of the RPi CPUs are different form the older
ones and you may not be able to access the GPIO Header at the end of this tutorial. A solution to this is
given in an online tutorial by from E-Tinkers blogger Henry Cheung. For more details, please refer to previouse
section.

The following is the key part of this chapter. The installation steps refer to WebIOPi official. And you also can
directly refer to the official installation steps. The latest version (in 2016-6-27) of WeblOPi is 0.7.1. So, you
may encounter some issues in using it. We will explain these issues and provide the solution in the following
installation steps.

Here are the steps to build a WeblOPi:

Installation

1. Get the installation package. You can use the following command to obtain.

wget https://github.com/Freenove/WebIOPi/archive/master.zip —0 WebIOPi.zip

2. Extract the package and generate a folder named "WeblOPi-master". Then enter the folder.

unzip WebIOPi.zip

cd WebIOPi-master/WebIOPi-0.7.1

3. Patch for Raspberry Pi B+, 2B, 3B, 3B+.

patch —-pl -i webiopi-pi2bplus.patch

4. Run setup.sh to start the installation, the process takes a while and you will need to be patient.

sudo ./setup.sh

5. If setup.sh does not have permission to execute, execute the following command

sudo sh ./setup.sh

Run

After the installation is completed, you can use the webiopi command to start running.
$ sudo webiopi [-h] [-c config] [-] log] [-s script] [-d] [port]

Options:
-h, --help Display this help
-c, --config file Load config from file
-1, --log file Log to file
-s, --script file Load script from file

-d, --debug Enable DEBUG
Arguments:
port Port to bind the HTTP Server

Run webiopi with verbose output and the default config file:

sudo webiopi -d -c /etc/webiopi/config

The Port is 8000 in default. Now WeblOPi has been launched. Keep it running.

Access WeblOPi over local network

Under the same network, use a mobile phone or PC browser to open your RPi IP address, and add a port

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/Freenove/WebIOPi/archive/master.zip

B www.freenove.com < support@freenove.com [

number like 8000. For example, my personal Raspberry Pi IP address is 192.168.1.109. Then, in the browser, |
then should input: http://192.168.1.109:8000/
Default user is "webiopi” and password is "raspberry”.

Then, enter the main control interface:

WebIOPi Main Menu

GPIO Header

Control and Debug the Raspberry Pi GPIO with a display which looks like the physical header.

GPIO List

Control and Debug the Raspberry Pi GPID ordered in a single column.

Serial Monitor

Use the browser to play with Serial interfaces configured in WebIOFi.

Devices Monitor

Control and Debug devices and clrcuits wired to vour Pi and configured in WebIOPI.

Click on GPIO Header to enter the GPIO control interface.

sav[] [El sov
izc soa[__| [l 5.ov

izc sci[_| [srouno
onewire [Jil] [l varT
croun [LY varT rx
(IR, 11 | 12 [ELIGRE
apio 27 [EE] Y srouno
ario 22 [E] [k crro 23

sav[] B erro 24
apio 10| |[E&J srounp
arioo[_|[EYcrio2s
erio1[_|[]erios [EIL
srounn [[]ero7 [
apio 5[] [crounp

IR | 32 [IRER N
apio 13 [EE] Y srounp
LIRE] 35 | 36 [CLISRTINN NN
ario 26 [[erio 20 [N
crouno [srio21 [0

(=
=

AE o
212

>
3

Control methods:

® C(Click/Tap the OUT/IN button to change GPIO direction.

® Click/Tap pins to change the GPIO output state.

Completed

According to the circuit we build, set GPIO17 to OUT, then click Header11 to control the LED.
You can end the webioPi in the terminal by “Ctr+C".

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://192.168.1.109:8000/

4 support@freenove.com www.freenove.com [l

Chapter 27 Soldering a Circuit Board

From previous chapters, we have learned about electronic circuits and components and have built a variety
of circuits using a Breadboard device, which is not designed to be used permanently. We now will take a
further step to make permanent projects using a Perfboard (a type of Prototype Circuit Board). Note:
Perfboard is a stiff, thin sheet of insulated material with holes bored on a grid. The grid is usually a squared
off shape with a spacing of 0.1 inches. Square copper pads cover these holes to make soldering electronic
components easier.

To finish this chapter, you need to prepare the necessary soldering equipment, including an electric soldering
iron (or soldering pencil) and solder. We have already prepared the Perfboard for you.

CAUTION: Please use extreme caution and attention to safety when you operate soldering tools used
in these projects.

Project 27.1 Soldering a Buzzer

You should be familiar with the Buzzer from our previous project. We will solder a permanent circuit that
when a Push Button Switch is pressed a Buzzer sounds

Note: This circuit does not require programming and will work when it is powered ON. When the button is
not pressed and the Buzzer is not in use, there is no power consumption.

You can install it on your bicycle, your bedroom door or any other place where you want a Buzzer.

Component list

Female Pin Header | LED x1 Resistor 220Q x1 Active buzzer x1 Push button x1

X2

AA Battery Holder x1 and AA Batteries x2

AA Battery |
]

| prm— Auajaeg uhd

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [ASH

Circuit

We will solder the following circuit on the Perfboard.

Schematic diagram Hardware connection.
If you need any support, please feel free to contact
us via: support@freenove.com

+—& DDA

LED1
¥

Buzzer

R1
220Q

R

Note: If you are new to soldering electronic components on any type of circuit board we strongly recommend
that you watch some instructional How-To videos by doing an Internet search and practice your soldering
technique before attempting to solder the following projects. Some components can be damaged by
exposure to excessive heat for prolonged times and there are various techniques you can learn that will help
with making neater solder joints.

Solder the Circuit

Insert the components in the Perfboard following the Hardware Connection image as a general visual guide.
Insert the pins of the components (all from the same side) so that you have only the components on one side
of the Perfboard and the pins on the other. Then from the side with the pins carefully solder the circuit on the
backside without having excess solder shorting out any portions of the circuit.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Here is a diagram after soldering from both sides of the Perfboard:

Front Back

00O gy

Gy 4

I HDJIADOHY

ONIHSYM
H314V
v3s
IAONW3H

&

e & By &% @ & D

~,
)

o D

e
=
| <
4
Q
o
(=)
]
7]
N
<
<
={
»”

]

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com AR

Test the Circuit

Connect the circuit board to a power supply (3~5V). You can use Raspberry Pi board or your 2 AA Cell
Battery Box as the power supply.

Tear the label off

Anode (-)

REMOVE
SEAL

AFTER
WASHING

RESE8S 8858

Cathode (+)

Press the Push Button Switch after connecting the power and then the buzzer will sound.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Project 27.2 Soldering a Flowing Water Light

You should be familiar with the Flowing Water Light from our previous project. We will solder a permanent
circuit using improved code to make a more interesting Flowing Water Light.

Component List

Female Pin Header x5 Resistor 220Q x8 LED x8 74HCH95 x1

Circuit

Solder the following circuit on the Perfboard.

Schematic diagram Hardware connection

R1
200 S LEDY

220Q A LED2

v

v
R3
- o200 N Leps

Y R4

2200 . LED4

L—

5V
Q1 vee J

Q Qo
3 Ds [14
Q4 OF
RN 36 sce
LED7 =
< Q7 MR [10
R N

8 v
2200 LEDS GND Q7
74HC595

5
2200 . LEDS

R6
XX
2200 |1 LED6

| BlWIN

~

%?Jé%%

b

Soldering the Circuit

Insert the components in the Perfboard, and solder the circuit on the back per earlier instructions.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [0

C OGN NN
Aansseme e

Here is a diagram after soldering from both sides of the Perfboard:
Front Back

SHOdONNTY fFIHNHN IXATdOHNAY

-3

A A0

38573

Connecting the Circuit

Connect the board to Raspberry Pi with jumper wire in the following way.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

ABUDEFGHIJKLMNOPORSTUV WX

J0A
anNo
Sd

L20ld9—dO 1S

LTOld9—

NS/NEE—
aN9—
¢¢0Id9—dO HS

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [0S

Code

This now will be the third time we have made the Flowing Water Light. In this project, we will solder a
completely new circuit for Flowing Water Light. Additionally, the program is also different from the previous
ones we have used. When this light flows, it will have a long “tail”.

C Code 27.2.1 LightWater03

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 27.2.1_LightWater03 directory of C code.

cd ~/Freenove_Kit/Code/C_Code/27.2.1_LightWatero3

2. Use following command to compile “LightWater03.c” and generate executable file “LightWater03".

gcc LightWater03.c -o LightWater03 -lwiringPi

3. Then run the generated file “LightWater03”.

sudo ./LightWatero03

After the program is executed, the LEDs will light up in the form of flowing water with a long “tail”.

The following is the program code:

finclude <wiringPi.h>
#include <stdio.h>
finclude <wiringShift.h>
#include <unistd.h>

#define dataPin 0 //DS Pin of 74HC595(Pinl4)
#tdefine latchPin 2 //ST CP Pin of 74HC595(Pinl2)
fidefine clockPin 3 //SH_CP Pin of 74HC595(Pinl1)
//Define an array to store the pulse width of LED, which will be output to the 8 LEDs in
order.
const int pluseWidth[]={0,0,0,0,0,0,0,0, 64, 32, 16, 8,4, 2,1,0,0, 0,0, 0,0, 0, 0} ;
void outData (7nt8 ¢ data) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, LSBFIRST, data) ;
digitalWrite (latchPin, HIGH) ;

void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i <8; i++){
digitalWrite (cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);

delayMicroseconds (10) ; // 10 times longer then earlier exercise

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

www.freenove.com

else { // if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW);

delayMicroseconds (10) ; // 10 times longer then earlier exercise

}
digitalWrite (cPin, HIGH) ;

delayMicroseconds (10) ; // 10 times longer than earlier exercise

int main(void)
{
int i, j, index; //index:current position in array pluseWidth

int moveSpeed = 100; //It works as a delay. The larger, the slower

long lastMove; //Record the last time point of the led move
printf ("Program is starting ...\n”);
wiringPiSetup() ;

pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
index = 0; //Starting from the array index 0
lastMove = millis(); // record the start time
while (1) {
if(millis() - lastMove > moveSpeed) { //speed control
lastMove = millis(); //Record the time point of the move
index++; //move to next
if(index > 15) index = 0; //index to 0
}
for (i=0;i<64;i++) { //The cycle of PWM is 64 cycles
int8 t data = 0;
for (j=0; j<8; j++) { //Calculate the output state

if (i < pluseWidth[index+j]){ //Calculate the LED state according to the

pulse width
data |= 0x01<<j ; //Calculate the data

}
outData (data) ; //Send the data to 74HC595

}

return 0;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

X support@freenove.com

We can see that this program is different from the previous one that we had used. We define an array to
modulate different PWM pulse widths for LEDs, in doing so different LEDs can emit varied brightness. Starting
from the array index 0, take an array of 8 adjacent numbers as the LED duty cycle and output it one at a time.
Increasing the starting index number in turn, then it will create a flowing effect.

‘ ‘ const int pluseWidth[]={0,0,0,0,0,0,0,0, 64, 32,16, 8,4,2,1,0,0,0,0,0,0,0,0} ;

By recording the moving time point to control the speed of the movement of index number, controls the
speed of the Flowing Water Light. Variable moveSpeed saves the time interval of each move, and the greater
the value is, the slower the rate of the flowing movement (the reverse creates faster flowing movement).

index++;

—

if(millis() — lastMove > moveSpeed) { //speed control

lastMove = millis();
//move to next
if (index > 15) index = 0;

//Record the time point of the move

//index to 0

Finally, in a “for” loop with i=64, modulate the output pulse width of the PWM square wave. The process, from
the beginning of implementing the for loop to the end, is a PWM cycle. In the loop, there is another for loop
with j=8 and in this loop, it compares the number “i” to the value of the array to determine output high or
low level. Then, the data will be sent to the 74HC595 IC Chip.

for (1=0;1<64;1i++) {
int8 t data = 0;
for (j=0; j<8;j++) {

the pulse width
data

J
outData(data) ;

——

if(i < pluseWidth[index+j]) {

= 0x01<<j

//The cycle of PWM is 64 cycles

//This loop of output data

//Calculate the output state of this loop

//Calculate the LED state according to

//Calculate the data

//Send the data to 74HC595

support@freenove.com [l

305

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Python Code 27.2.1 LightWater03

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 27.2.1_LightWater03 directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/27.2.1_LightWatere3

2. Use Python command to execute Python code “LightWater03.py”.

python LightWater03.py

After the program is executed, the LEDs will light up in the form of flowing water with a long “tail”.
The following is the program code:

import RPi.GPIO as GPIO

import time

LSBFIRST = 1

MSBFIRST = 2

#tdefine the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pinl4)
latchPin = 13 #ST CP Pin of 74HC595(Pinl2)
clockPin = 15 #SH CP Pin of 74HC595(Pinll)

#Define an array to save the pulse width of LED. Output the signal to the 8 adjacent LEDs

in order.
pluseWidth = [0,0,0,0,0,0, 0, 0, 64, 32, 16, 8,4, 2, 1,0, 0, 0, 0, 0, 0, 0, 0]

def setup():
GPI0. setmode (GPI0. BOARD) # Number GPIOs by its physical location
GPIO0. setup(dataPin, GPIO.OUT)
GPTO0. setup (latchPin, GPIO. OUT)
GPTO0. setup(clockPin, GPIO.OQUT)

def shiftOut(dPin, cPin, order, val) :
for i in range (0, 8) :
GPIO0. output (cPin, GPIO. LOW) ;
if(order == LSBFIRST) :
GPI0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO. LOW)
GPI0. output (cPin, GPI0. HIGH) ;

def outData(data) :
GPI0. output (1atchPin, GPT0. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, data)
GPI0. output (latchPin, GPTO0. HIGH)

def loop():

moveSpeed = 0.1 #move speed delay, the larger, the slower

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com I

index = 0 #Starting from the array index 0
lastMove = time. time() #ithe start time
while True:

if (time. time() — lastMove > moveSpeed): #speed control

lastMove = time. time() #Record the time point of the move
index +=1 #move to next
if(index > 15): #index to 0

index = 0

for i in range(0,64): #The cycle of PWM is 64 cycles
data = 0 #This loop of output data
for j in range(0, 8): #Calculate the output state of this loop
if (i < pluseWidth[j+index]): #Calculate the LED state according to the
pulse width
data |= 1<<j #Calculate the data
outData(data) #Send the data to 74HC595

def destroy():
GPI10. cleanup()

if name == main ’
print (Program is starting...’)
setup()
try:
Loop ()
except KeyboardInterrupt:
destroy()

We can see that this program is different from the previous one that we had used. We define an array to
modaulate different PWM pulse widths for LEDs, in doing so different LEDs can emit varied brightness. Starting
from the array index 0, take an array of 8 adjacent numbers as the LED duty cycle and output it one at a time.
Increasing the starting index number in turn, then it will create a flowing effect.

! pluseWidth = [0,0,0,0,0, 0,0, 0, 64, 32, 16, 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0]

By recording the moving time point to control the speed of the movement of index number, controls the
speed of the Flowing Water Light. Variable moveSpeed saves the time interval of each move, and the greater
the value is, the slower the rate of the flowing movement (the reverse creates faster flowing movement).

if (time. time() — lastMove > moveSpeed): #speed control
lastMove = time. time() #Record the time point of the move
index +=1 #move to next
if (index > 15): #index to 0
index = 0

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com www.freenove.com [l

Finally, in a “for” loop with i=64, modulate the output pulse width of the PWM square wave. The process, from

the beginning of implementing the for loop to the end, is a PWM cycle. In the loop, there is another for loop

with j=8 and in this loop, it compares the cycle number “i” to the value of the array to determine output high

or low level. Then, the data will be sent to the 74HC595 IC Chip.
for i in range(0,64): #The cycle of PWM is 64 cycles

data = 0 #This loop of output data
for j in range(0, 8): #Calculate the output state of this loop
if (i < pluseWidth[j+index]): #Calculate the LED state according to the

pulse width
data |= 1<<j #Calculate the data

outData(data) #Send the data to 74HC595

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

What's Next?

THANK YOU for participating in this learning experience! If you have completed all of the projects successfully
you can consider yourself a Raspberry Pi Master.

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or
questions about the Tutorial or component contents of this Kit, please feel free to contact us:
support@freenove.com

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a
revised version.

If you are interesting in processing, you can study the Processing.pdf in the unzipped folder.

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products
in science and technology, please continue to visit our website. We will continue to launch fun, cost-effective,
innovative and exciting products.

http://www.freenove.com/

Thank you again for choosing Freenove products.

support@freenove.com [l

309

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/

	Getting Started
	Safety and Precautions
	Car and Robot for Raspberry Pi
	About Freenove
	Copyright

	Contents
	Preface
	Raspberry Pi
	Installing an Operating System
	Component List
	Required Components

	Optional Components
	Required Accessories for Monitor
	Required Accessories for Remote Desktop

	Raspberry Pi OS
	Automatically Method
	Manually Method
	Write System to Micro SD Card

	Enable ssh

	Getting Started with Raspberry Pi
	Monitor desktop
	Remote desktop & VNC
	MAC OS Remote Desktop
	Windows OS Remote Desktop
	VNC Viewer & VNC

	Chapter 0 Preparation
	Linux Command
	Shortcut Key

	Install WiringPi
	WiringPi Installation Steps

	Obtain the Project Code
	Python2 & Python3

	Chapter 1 LED
	Project 1.1 Blink
	Component List
	GPIO
	BCM GPIO Numbering
	PHYSICAL Numbering
	WiringPi GPIO Numbering

	Circuit
	Component knowledge
	LED
	Resistor
	Breadboard
	GPIO Extension Board

	Code
	C Code 1.1.1 Blink
	Python Code 1.1.1 Blink

	Other Code Editors (Optional)
	vi
	nano
	geany

	Community app

	Chapter 2 Buttons & LEDs
	Project 2.1 Push Button Switch & LED
	Component List
	Component knowledge
	Push Button Switch

	Circuit
	Code
	C Code 2.1.1 ButtonLED
	Python Code 2.1.1 ButtonLED

	Project 2.2 MINI Table Lamp
	Debounce a Push Button Switch
	Code
	C Code 2.2.1 Tablelamp
	Python Code 2.2.1 Tablelamp

	Chapter 3 LED Bar Graph
	Project 3.1 Flowing Water Light
	Component List
	Component knowledge
	Bar Graph LED

	Circuit
	Code
	C Code 3.1.1 LightWater
	Python Code 3.1.1 LightWater

	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component List
	Component Knowledge
	Analog & Digital
	PWM

	Circuit
	Code
	C Code 4.1.1 BreathingLED
	Python Code 4.1.1 BreathingLED

	Chapter 5 RGB LED
	Project 5.1 Multicolored LED
	Component List
	Circuit
	Code
	C Code 5.1.1 Colorful LED
	Python Code 5.1.1 ColorfulLED

	Chapter 6 Buzzer
	Project 6.1 Doorbell
	Component List
	Component knowledge
	Buzzer
	Transistors

	Circuit
	Code
	C Code 6.1.1 Doorbell
	Python Code 6.1.1 Doorbell

	Project 6.2 Alertor
	Code
	C Code 6.2.1 Alertor
	Python Code 6.2.1 Alertor

	(Important) Chapter 7 ADC
	Project 7.1 Read the Voltage of Potentiometer
	Component List
	Circuit knowledge
	ADC
	DAC

	Component knowledge
	Potentiometer
	Rotary potentiometer
	PCF8591
	ADS7830
	I2C communication

	Circuit with PCF8591
	Circuit with ADS7830
	Configure I2C and Install Smbus
	Enable I2C
	Install I2C-Tools
	Install Smbus Module

	Code
	C Code 7.1.1 ADC
	Python Code 7.1.1 ADC
	Reference

	Chapter 8 Potentiometer & LED
	Project 8.1 Soft Light
	Component List
	Circuit with PCF8591
	Code
	C Code 8.1.1 Softlight
	Python Code 8.1.1 Softlight

	Chapter 9 Potentiometer & RGBLED
	Project 9.1 Colorful Light
	Component List
	Circuit with PCF8591
	Circuit with ADS7830
	Code
	C Code 9.1.1 Colorful Softlight
	Python Code 9.1.1 ColorfulSoftlight

	Chapter 10 Photoresistor & LED
	Project 10.1 NightLamp
	Component List
	Photoresistor

	Circuit with PCF8591
	Circuit with ADS7830
	Code
	C Code 10.1.1 Nightlamp
	Python Code 10.1.1 Nightlamp

	Chapter 11 Thermistor
	Project 11.1 Thermometer
	Component List
	Component knowledge
	Thermistor

	Circuit with PCF8591
	Circuit with ADS
	Code
	C Code 11.1.1 Thermometer
	Python Code 11.1.1 Thermometer

	Chapter 12 Joystick
	Project 12.1 Joystick
	Component List
	Component knowledge
	Joystick

	Circuit with PCF8591
	Circuit with ADS7830
	Code
	C Code 12.1.1 Joystick
	Python Code 12.1.1 Joystick

	Chapter 13 Motor & Driver
	Project 13.1 Control a DC Motor with a Potentiometer
	Component List
	Component knowledge
	Breadboard Power Module
	DC Motor
	L293D

	Circuit with PCF8591
	Circuit with ADS7830
	Code
	C Code 13.1.1 Motor
	Python Code 13.1.1 Motor

	Chapter 14 Relay & Motor
	Project 14.1.1 Relay & Motor
	Component List
	Component knowledge
	Relay
	Inductor

	Circuit
	Code
	C Code 14.1.1 Relay
	Python Code 14.1.1 Relay
	Python Code 14.1.1 Relay

	Chapter 15 Servo
	Project 15.1 Servo Sweep
	Component List
	Component knowledge
	Servo

	Circuit
	Code
	C Code 15.1.1 Sweep
	Python Code 15.1.1 Sweep

	Chapter 16 Stepper Motor
	Project 16.1 Stepper Motor
	Component List
	Component knowledge
	Stepper Motor
	ULN2003 Stepper Motor driver

	Circuit
	Code
	C Code 16.1.1 SteppingMotor
	Python Code 16.1.1 SteppingMotor

	Chapter 17 74HC595 & Bar Graph LED
	Project 17.1 Flowing Water Light
	Component List
	Component knowledge
	74HC595

	Circuit
	Code
	C Code 17.1.1 LightWater02
	Python Code 17.1.1 LightWater02

	Chapter 18 74HC595 & 7-Segment Display
	Project 18.1 7-Segment Display
	Component List
	Component knowledge
	7-segment display

	Circuit
	Code
	C Code 18.1.1 SevenSegmentDisplay
	Python Code 18.1.1 SevenSegmentDisplay

	Project 18.2 4-Digit 7-Segment Display
	Component List
	Component knowledge
	4 Digit 7-Segment Display

	Circuit
	Code
	C Code 18.2.1 StopWatch
	Python Code 18.2.1 StopWatch

	Chapter 19 74HC595 & LED Matrix
	Project 19.1 LED Matrix
	Component List
	Component knowledge
	LED matrix

	Circuit
	Code
	C Code 19.1.1 LEDMatrix
	Python Code 19.1.1 LEDMatrix

	Chapter 20 LCD1602
	Project 20.1 I2C LCD1602
	Component List
	Circuit
	Code
	C Code 20.1.1 I2CLCD1602
	Python Code 20.1.1 I2CLCD1602

	Chapter 21 Hygrothermograph DHT11
	Project 21.1 Hygrothermograph
	Component List
	Component knowledge
	Circuit
	Code
	C Code 21.1.1 DHT11
	Python Code 21.1.1 DHT11

	Chapter 22 Matrix Keypad
	Project 22.1 Matrix Keypad
	Component List
	Component knowledge
	4x4 Matrix Keypad

	Circuit
	Code
	C Code 22.1.1 MatrixKeypad
	Python Code 22.1.1 MatrixKeypad

	Chapter 23 Infrared Motion Sensor
	Project 23.1 PIR Infrared Motion Detector with LED Indicator
	Component List
	Component Knowledge
	Circuit
	Code
	C Code 23.1.1 SenseLED
	Python Code 23.1.1 SenseLED

	Chapter 24 Ultrasonic Ranging
	Project 24.1 Ultrasonic Ranging
	Component List
	Component Knowledge
	Circuit
	Code
	C Code 24.1.1 UltrasonicRanging
	Python Code 24.1.1 UltrasonicRanging

	Chapter 25 Attitude Sensor MPU6050
	Project 25.1 Read a MPU6050 Sensor Module
	Component List
	Component knowledge
	MPU6050

	Circuit
	Code
	C Code 25.1.1 MPU6050RAW
	Python Code 25.1.1 MPU6050RAW

	Chapter 26 Web IoT
	Project 26.1 Remote LED
	Component List
	Circuit
	Solution from E-Tinkers
	WebIOPi Service Framework
	Installation
	Run
	Access WebIOPi over local network
	Completed

	Chapter 27 Soldering a Circuit Board
	Project 27.1 Soldering a Buzzer
	Component list
	Circuit
	Solder the Circuit
	Test the Circuit

	Project 27.2 Soldering a Flowing Water Light
	Component List
	Circuit
	Soldering the Circuit
	Connecting the Circuit
	Code
	C Code 27.2.1 LightWater03
	Python Code 27.2.1 LightWater03

	What's Next?

